
Recent advances in molecular biology, microfluidics 
and nanotechnology have given rise to a multitude of 
single- cell sequencing technologies (Fig. 1). Initial meth-
ods have focused on measurements of a single modality 
(for example, DNA sequence, RNA expression or chro-
matin accessibility). Although these technologies have 
yielded transformative insights into cellular diversity 
and development, this segregation is driven by methodo-
logical convenience and limits the ability to derive a deep 
understanding of the relationships between biomole-
cules in single cells. Understanding these interactions 
is key to deriving a deep understanding of the cellular 
state and remains a challenge for the field of single- 
cell analysis. Moreover, as the scale and availability of 
data sets rapidly grow, new computational methods are 
needed for normalization and joint analysis across sam-
ples, even in the presence of significant batch effects or  
interindividual variation.

Single- cell RNA sequencing (scRNA- seq) is one of the 
most widely used single- cell sequencing approaches, 
with a range of technologies for sensitive, highly multi-
plexed or combinatorially barcoded profiling1–8. These 
advances have accompanied a variety of complementary 
single- cell genomic, epigenomic and proteomic profiling 
technologies, including methods for single- cell measure-
ments of genome sequence9,10, chromatin accessibil-
ity11–15, DNA methylation11,16–19, cell surface proteins20,21, 
small RNAs22, histone modifications23,24 and chromo-
somal conformation25,26. Furthermore, recent efforts have 
pioneered methods to accurately record spatial or lineage 
information in single- cell studies27–35 (Fig. 1; TAble 1).

An idealized experimental workflow would observe 
all aspects of the cell, including a full history of its 
molecular states, spatial positions and environmental 
interactions. Although outside the bounds of current 
technology, multimodal technologies and integrative 
computational methods enable us to move closer to 

this aspirational and exciting goal. In this Review, we 
describe the currently available methods for single- cell 
transcriptomics, genomics, epigenomics and proteom-
ics with an emphasis on those methods that provide 
multimodal data or data that can be integrated into  
a multimodal analysis. We focus on the analysis of 
scRNA- seq data in conjunction with other data types, 
as these are currently the most commonly used and 
well- established methods. In particular, we discuss those 
methods capable of integrating data from the same indi-
vidual cell wherever possible. We discuss these methods 
and their challenges in depth, as well as their potential 
applications and future directions.

Multimodal single- cell measurements
Single- cell molecular profiling technologies initially 
focused on the development of methods capable of 
accurately detecting a single aspect of the cell state, first 
with simple semiquantitative readouts36 and later utiliz-
ing high- throughput DNA sequencing37. More recently, 
there has been considerable interest in the simultaneous 
profiling of multiple types of molecule within a single cell 
(multimodal profiling) to build a much more compre-
hensive molecular view of the cell. Often, these meth-
ods couple scRNA- seq with the measurement of another 
cellular characteristic, such as DNA sequence, protein 
abundance or epigenomic state. Multimodal data can 
be obtained from single cells using four broad strategies 
(Fig. 2): first, the use of an initial non- destructive assay 
before sequencing; second, the separation of different cel-
lular fractions for parallel experimental workflows; third, 
the experimental conversion of multimodal data into a 
common molecular format to enable the simultaneous 
detection of multiple data types via a common method-
ology, such as DNA sequencing; and fourth, the analysis 
of different data types encoded in nucleotide sequences, 
such as RNA abundance and sequence polymorphisms.

Single- cell RNA sequencing
(scRNA- seq). Sequencing of 
cDNAs derived from RNA 
molecules (usually 
polyadenylated mRNAs) from 
a single cell. it is typically 
performed for many hundreds 
to thousands of cells in a single 
experiment.

Multimodal
Data of multiple types, for 
example, of RNA and protein.
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Gathering cytometric information before a destructive  
assay. An initial and elegant solution for multimodal 
profiling involves the application of non- destructive 
cytometric measurements before the application of a 
destructive single- cell assay. As multiple scRNA- seq 
workflows utilize fluorescence- activated cell sort-
ing (FACS) to deposit individual cells into micro titre 
plates2,3,38, it is a natural extension to combine this 
single- cell isolation with index sorting to gather addi-
tional cytometric data about the cells before sequencing 
(Fig. 2a). Whereas early studies combined measurements 
of the cell cycle and semiquantitative measurements of 
mRNAs from the same cell39, this approach has been 
particularly fruitful in immunology and haematology, 
where well- defined cell surface markers can be used to 
classify functional cell types and states40,41 or to enrich 
for rare cells in heterogeneous populations. Paul et al.41 
and Nestorowa et al.42 applied this workflow to profile 
early murine haematopoietic progenitors, revealing the 
immunophenotypes of transcriptionally defined cell- 
type clusters. Similarly, Wilson et al.40 utilized FACS 

isolation of rare haematopoietic stem cells (HSCs) fol-
lowed by scRNA- seq and functional assays to identify 
cell surface markers associated with cells that are able 
to consistently self- renew40. New methods that utilize 
arrays of picolitre wells have the potential to dramatically 
increase the scale of these experiments while retaining 
the ability to gather cytometric data before single- cell 
assays43. However, cytometric methods are fundamen-
tally limited in the number of parameters they can meas-
ure for each cell, as they are limited by spectral overlap 
between the fluorescent reporters.

Separation of cellular components. Alternative 
approaches are required in order to measure aspects of 
the cell that cannot easily be read out through cellular 
fluorescence. This requirement is especially relevant for 
experiments aiming to simultaneously measure mRNAs 
alongside genomic DNA or intracellular protein in the 
same cell. In these cases, the physical separation or selec-
tive tagging of different cellular fractions from single cells 
presents an attractive solution (Fig. 2b). Several groups 
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Fig. 1 | Multimodal and integrative methods for single- cell analyses. An overview of the current methods for single- 
cell data integration is shown. A wide variety of single- cell methods have now been developed to measure a broad range 
of cellular parameters. These methods can be divided into those that determine the current state of the cell, those that 
determine the cell lineage, and computational methods that order cells along a pseudotemporal trajectory. CITE- seq, 
cellular indexing of transcriptomes and epitopes by sequencing; FACS, fluorescence- activated cell sorting; LINNAEUS, 
lineage tracing by nuclease- activated editing of ubiquitous sequences; MARS- seq, massively parallel RNA single- cell 
sequencing; MEMOIR , memory by engineered mutagenesis with optical in situ readout; MERFISH, multiplexed error- 
robust fluorescence in situ hybridization; PEA , proximity extension assay ; REAP- seq, RNA expression and protein sequencing 
assay ; scATAC- seq, single- cell assay for transposase- accessible chromatin using sequencing; scBS- seq, single- cell bisulfite 
sequencing; scChIP–seq, single- cell chromatin immunoprecipitation followed by sequencing; scGESTALT, single- cell 
genome editing of synthetic target arrays for lineage tracing; sci- MET, single- cell combinatorial indexing for methylation 
analysis; sci- RNA-seq, single- cell combinatorial indexing RNA sequencing; SCI- seq, single- cell combinatorial indexed 
sequencing; sciATAC- seq, single- cell combinatorial indexing assay for transposase- accessible chromatin using 
sequencing; scTHS- seq, single- cell transposome hypersensitivity site sequencing; smFISH, single- molecule fluorescence 
in situ hybridization; snmC- seq, single- nucleus methylcytosine sequencing; SNS, single- nucleus sequencing; SPLiT- seq, 
split- pool ligation- based transcriptome sequencing; STARmap, spatially resolved transcript amplicon readout mapping.

Index sorting
Fluorescence- activated sorting 
of cells into known plate 
locations.
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Table 1 | Current experimental methods for unimodal and multimodal single- cell measurements

Data types Method name Feature throughput Cell throughput Refs

Unimodal

mRNA Drop- seq Whole transcriptome 1,000–10,000 4

InDrop Whole transcriptome 1,000–10,000 5

10X Genomics Whole transcriptome 1,000–10,000 6

Smart- seq2 Whole transcriptome 100–300 38

MARS- seq Whole transcriptome 100–300 3

CEL- seq Whole transcriptome 100–300 1

SPLiT- seq Whole transcriptome  ≥ 50,000 8

sci- RNA-seq Whole transcriptome  ≥ 50,000 7

Genome sequence SNS Whole genome 10–100 9

SCI- seq Whole genome 10,000–20,000 10

Chromatin accessibility scATAC- seq Whole genome 1,000–2,000 13

sciATAC- seq Whole genome 10,000–20,000 14

scTHS- seq Whole genome 10,000–20,000 15

DNA methylation scBS- seq Whole genome 5–20 17

snmC- seq Whole genome 1,000–5,000 16

sci- MET Whole genome 1,000–5,000 19

scRRBS Reduced representation genome 1–10 18

Histone modifications scChIP–seq Whole genome + single modification 1,000–10,000 24

Chromosome conformation scHi- C-seq Whole genome 1–10 26

Multimodal

Histone modifications + spatial NA Single locus + single modification 10–100 23

mRNA + lineage scGESTALT Whole transcriptome 1,000–10,000 32

ScarTrace Whole transcriptome 1,000–10,000 33

LINNAEUS Whole transcriptome 1,000–10,000 34

Lineage + spatial MEMOIR NA 10–100 27

mRNA + spatial osmFISH 10–50 RNAs 1,000–5,000 35

STARmap 20–1,000 RNAs 100–30,000 31

MERFISH 100–1,000 RNAs 100–40,000 108

seqFish 125–250 RNAs 100–20,000 29

mRNA + cell surface protein CITE- seq Whole transcriptome + proteins 1,000–10,000 20

REAP- seq Whole transcriptome + proteins 1,000–10,000 21

mRNA + chromatin accessibility sci- CAR Whole transcriptome + whole genome 1,000–20,000 48

mRNA + DNA methylation scM&T- seq Whole genome 50–100 46

mRNA + genomic DNA G&T- seq Whole genome + whole transcriptome 50–200 44

mRNA + intracellular protein NA 96 mRNAs + 38 proteins 50–100 50

82 mRNAs + 75 proteins 50–200 49

DNA methylation + chromatin accessibility scNOMe- seq Whole genome 10–20 11

CEL- seq, cell expression by linear amplification and sequencing; CITE- seq, cellular indexing of transcriptomes and epitopes by sequencing; G&T- seq, genome  
and transcriptome sequencing; LINNAEUS, lineage tracing by nuclease- activated editing of ubiquitous sequences; MARS- seq, massively parallel RNA single- cell 
sequencing; MEMOIR , memory by engineered mutagenesis with optical in situ readout; MERFISH, multiplexed error- robust fluorescence in situ hybridization; 
osmFISH, cyclic single- molecule fluorescence in situ hybridization; REAP- seq, RNA expression and protein sequencing assay; scATAC- seq, single- cell assay for 
transposase- accessible chromatin using sequencing; scBS- seq, single- cell bisulfite sequencing; scChIP–seq, single- cell chromatin immunoprecipitation followed 
by sequencing; scGESTALT, single- cell genome editing of synthetic target arrays for lineage tracing; scHi- C-seq, a single- cell Hi- C method for chromosome 
conformation; sciATAC- seq, single- cell combinatorial indexing assay for transposase- accessible chromatin using sequencing; sci- CAR , single- cell combinatorial 
indexing chromatin accessibility and mRNA sequencing; sci- MET, single- cell combinatorial indexing for methylation analysis; sci- RNA-seq, single- cell 
combinatorial indexing RNA sequencing; SCI- seq, single- cell combinatorial indexed sequencing; scM&T- seq, single- cell methylome and transcriptome 
sequencing; scNOMe- seq, single- cell nucleosome occupancy and methylome sequencing; scRRBS, single- cell reduced representation bisulfite sequencing;  
scTHS- seq, single- cell transposome hypersensitivity site sequencing; seqFISH, sequential fluorescence in situ hybridization; snmC- seq, single- nucleus 
methylcytosine sequencing; SNS, single- nucleus sequencing; SPLiT- seq, split- pool ligation- based transcriptome sequencing; STARmap, spatially resolved 
transcript amplicon readout mapping.
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have now achieved parallel genome and transcriptome 
sequencing from the same cell either through the phys-
ical separation of mRNA and genomic DNA using 
biotinylated oligo(dT) primers44 or the selective incor-
poration of T7 promoter sequences into cDNAs allow-
ing subsequent selective amplification of cDNAs over  
genomic DNA through in vitro transcription45. This has 
allowed a direct association between genotype and gene 
expression to be made, revealing that DNA copy num-
ber variations and chromosomal rearrangements may 
explain some of the variability in mRNA abundance 
between individual cells. These methods will be of par-
ticular interest for tissues with high levels of somatic 
genetic variation, such as tumours.

Building on methods established by Macaulay et al.44 
and the single- cell bisulfite sequencing methods pio-
neered by Smallwood et al.17, a sodium bisulfite treat-
ment step before PCR amplification of the genomic 
DNA fraction has allowed the capture of single- cell DNA  
methylation patterns along with gene expression data46. 
This enables a multimodal analysis of DNA methyl-
ation patterns and gene expression within the same 
cells. As DNA methylation patterns are plastic and vary 
greatly between cell types47, it is essential to decouple 
epigenomic variation from cell- type heterogeneity 
when aiming to decipher the association between DNA 
methylation marks and gene transcription. By gather-
ing DNA methylation and gene expression data from 
the same cell, a direct association between epigenomic 
variation and transcriptional variation can be made. 
This information allowed the association between gene 
expression and DNA methylation patterns at regulatory 

regions to be assessed within the same cell and provided 
further support for the established negative association 
between promoter methylation and gene expression, 
whereas DNA methylation at distal regulatory regions 
appears to have more variable effects upon gene expres-
sion46. The simultaneous collection of chromatin acces-
sibility and gene expression data has been performed by 
selectively tagging genomic DNA and cDNA molecules 
with specific barcode sequences48. Through a combi-
natorial indexing strategy, the authors were able to co- 
assay thousands of single cells and identify cis- regulatory 
elements that are likely to influence the expression of 
nearby genes48.

The physical separation of the cellular lysate can 
also enable the simultaneous detection of intracellular 
proteins and RNAs in single cells49,50. One study used a 
lyse- and-split strategy to detect both RNA and protein, 
separating the lysed cell into parallel workflows49. In one 
fraction, protein levels were quantified using the proxim-
ity extension assay (PEA) followed by quantitative PCR 
(qPCR), whereas mRNAs were detected using quantita-
tive reverse transcription PCR (qRT- PCR). PEA utilizes 
two different antibodies targeting the same protein to 
bring two conjugated DNA sequences into close proxim-
ity, providing a measurement that is robust to unbound 
antibody signals. Another study used a similar approach 
implemented in a microfluidic chamber where reverse 
transcription and PEA were performed in the same com-
partment without separating cell lysis fractions50. These 
studies highlight the complementary nature of protein 
and RNA data, as cells were able to be more accurately 
classified when both data types were used than when 
either was used alone49. However, both the quantity and 
quality of data retrieved by these approaches are limited. 
These methods were used to profile 82–96 RNAs and 
38–75 proteins in a single experiment (TAble 1), and so, 
there is a need to greatly increase the number of RNAs 
and proteins measured49,50. Additionally, the requirement 
for physical separation of cellular compartments or the 
use of microfluidic circuitry imposes limitations on  
cellular throughput.

Conversion of cellular information into a common 
molecular format. The experimental conversion of 
multiple data types into a single molecular format is one 
powerful approach for multimodal profiling, enabling 
multiple data types to be measured in parallel through a 
single workflow (Fig. 2c). A particularly relevant example 
involves the simultaneous conversion of cell surface pro-
tein information and mRNAs into cDNAs, allowing both 
to be detected simultaneously through DNA sequencing. 
Recently, two methods (CiTe- seq and ReAP- seq) exploited 
the use of DNA barcodes conjugated to antibodies to 
enable the measurement of cell surface protein abun-
dance alongside mRNAs with single- cell resolution20,21. 
By attaching poly(A) sequences to the antibody bar-
codes, the barcode sequences can be hybridized by the 
cell- specific reverse transcription primers and extended 
by reverse transcriptase, allowing antibody barcodes to 
be detected alongside mRNAs (Fig. 2c). These meth-
ods circumvent some of the limitations of FACS- based 
cell surface protein detection through the use of DNA 

In vitro transcription
Transcription of a DNA 
sequence in vitro using the T7 
RNA polymerase.

CITE- seq and REAP- seq
Cellular indexing of 
transcriptomes and epitopes 
by sequencing (CiTe- seq) and 
RNA expression and protein 
sequencing assay (ReAP- seq) 
are methods that are capable 
of detecting cell surface protein 
abundance and gene 
expression within the same 
single cell. They achieve this 
through the use of barcoded 
antibodies captured alongside 
mRNA transcripts in single- cell 
RNA sequencing (scRNA- seq) 
experiments.

Fig. 2 | Experimental methods for performing single- cell multimodal measurements. 
a | Gathering cytometric single- cell measurements using multiparameter fluorescence- 
activated cell sorting (FACS) before single- cell RNA sequencing (scRNA- seq) can allow 
fluorescence- based measurements of protein levels to be later linked to cellular 
transcriptomes; hence, RNA and protein levels can be analysed jointly in the same cell.  
b | A lyse- and-split strategy can allow parallel workflows to be performed on different 
cellular fractions. For example, the cytosol can be physically separated from the nucleus 
to allow measurement of cytosolic mRNAs through scRNA- seq and measurements of the 
genomic DNA using whole- genome sequencing or bisulfite sequencing to gather 
complementary data on the cell genotype or methylome, respectively. c | Innovative 
barcoding strategies can enable standard scRNA- seq methods to capture important 
additional information to enhance the analysis of cell transcriptomes. Cell surface 
protein abundance can be captured using standard scRNA- seq methods by conjugating 
polyadenylated antibody barcodes to antibodies targeting cell surface proteins20,21  
(left panel). These antibody barcode sequences can be captured alongside polyadenylated 
mRNAs and decoded to provide an estimate of protein levels for each cell. Allelic 
information can be encoded by the single- guide RNA (sgRNA) sequence used to guide 
Cas9 in pooled genetic screens, allowing gene knockout information to be associated 
with single- cell transcriptional profiles (middle panel). Cell lineage can also be encoded 
in a polyadenylated barcode sequence through the cumulative editing of a lineage array 
sequence by Cas9 (right panel). Over time, Cas9 will cut the lineage array , resulting in 
mutations at different points in the array. Cells sharing common mutations in the lineage 
array are likely to have originated from the same progenitor. By placing the lineage array 
sequence under the control of an RNA polymerase II promoter, these sequences can also 
be captured alongside endogenous mRNAs. d | Additional information can be extracted 
from scRNA- seq data beyond a typical analysis that provides only estimates of transcript 
counts in each cell. Somatic mutations can be identified from sequencing reads for each 
individual cell and can be used to reconstruct lineage relationships between cells. 
Retained introns can also be detected and can be used to give an estimate of the rate of 
change in transcript abundance (RNA velocity70). scBS- seq, single- cell bisulfite 
sequencing; scDNA- seq, single- cell DNA sequencing.
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barcodes, rather than fluorescent moieties, to label anti-
bodies20,21. DNA barcoding allows an arbitrary num-
ber of different antibodies targeting different epitopes 
to be mixed in a single experiment and later resolved 
through DNA sequencing, as the number of possible 
barcodes is 4 N, where N is the length of the barcode. 
Furthermore, these methods are compatible with high- 
cell-throughput droplet- based scRNA- seq methods4–6 
and so can potentially be scaled to millions of cells, 
removing many of the limitations of index sorting meth-
ods coupled to scRNA- seq. These studies have allowed 
a more detailed analysis of single cells than is possible 
by measuring a single modality, enabling fine discrimi-
nation between immune cell types that was not possible 
with mRNA data alone20, and may be further applied to 
study post- transcriptional gene regulation. Extending 
these methods to detect intracellular proteins alongside 
mRNAs, rather than only cell surface proteins, remains 
an important ongoing challenge, especially as the per-
meabilization of the cell typically results in extensive 
RNA degradation. Although technically imposing, this 
problem should not be intractable, and there are likely 
to be rapid developments in this area, either through the 
use of PEAs previously used to measure protein levels 
in single cells49–51 or the adaptation of newly developed 
scRNA- seq protocols for fixed tissues7,8.

These rapid developments demonstrate that as long 
as cellular information can be converted into a sequence-
able barcode, this information can be determined with 
readouts at single- cell resolution alongside the transcrip-
tome. This strategy extends not only to measurements 
of the natural cell state but also to cellular perturba-
tions. The development of high- throughput scRNA- seq 
methods and programmable DNA- editing methods 
using CRiSPR–Cas9 presents an ideal combination of 
technologies suited for large- scale perturbation exper-
iments for forward genetic studies52–55. As guide RNA 
sequences used to guide Cas9 binding sites are tran-
scribed by RNA polymerase III, they are not polyade-
nylated; therefore, these molecules are not detected by 
standard scRNA- seq methods that use oligo(dT) primers 
for reverse transcription. Just as CITE- seq and REAP- 
seq use polyadenylated antibody barcodes to convert cell 
surface protein information into nucleic acid sequences, 
CRISPR- based pooled genetic screens employ polyadeny-
lated guide RNA barcoding systems to provide a signal 
that is detectable through scRNA- seq. These guide bar-
code sequences are captured alongside mRNA expres-
sion information in standard scRNA- seq workflows, 
enabling the inference of Cas9 binding sites and gene 
expression in the same cell on a massively parallel scale. 
Several groups have now applied large- scale genetic 
perturbation experiments to study gene regulatory net-
works52, the unfolded protein response53, immune cell 
development55 and T cell receptor activation54. This 
approach holds much promise for the dissection of gene 
regulatory networks, and although studies have so far 
focused only on the perturbation of coding sequences, 
Cas9 targeting could be extended to study the roles of 
enhancers, insulators and other non- coding sequences 
in the genome56. Furthermore, catalytically inactivated 
versions of Cas9 could be fused to different effector 

domains, such as histone modifiers, transcriptional 
activators or repressors, and DNA methyltransferases, 
in order to assess the effect of epigenetic modifications 
on gene expression57–61 and could target combinations of 
epigenetic effectors with gene knockouts62.

Another case in which the conversion of cellular 
information into a sequenceable readout can provide 
valuable multimodal single- cell data is in the recent 
development of lineage tracing methods using CRISPR–
Cas9 genome editing28,32–34,63. Several single- cell lineage 
tracing methods capable of simultaneously detecting 
endogenous mRNAs have now been developed32–34. 
These methods typically induce continuous edits to a 
lineage barcode sequence using CRISPR–Cas9, and 
these barcodes can subsequently be transcribed into a 
polyadenylated mRNA and detected using conventional 
scRNA- seq. The DNA sequence differences between 
lineage barcodes from individual cells can then be used 
to construct a lineage tree for the tissue or organism. 
Regarding the specific experimental details of these 
methods, Raj et al.32, building on previous methods28, 
induced edits in a synthetic array of Cas9 target sites in 
the zebrafish genome. By placing the lineage barcode 
array under an inducible promoter, transcription of the 
barcode could be induced before cell collection, allow-
ing the lineage barcode to be reverse transcribed and 
sequenced along with cellular mRNAs32. This enabled 
lineage trees at single- cell resolution to be assembled for 
the zebrafish brain and a combined analysis of cell tran-
scriptomes and lineage relationships to be performed32. 
Spanjaard et al.34 took a similar approach but injected 
embryos at the single- cell stage with Cas9 and guide 
RNAs targeting 16–32 red fluorescent protein (RFP) 
transgenes integrated into the zebrafish genome at dif-
ferent loci. Over time, different RFP copies were mutated 
by Cas9, producing a lineage signature that could be read 
out from transcribed RFP sequences using scRNA- seq. 
Another approach, named ScarTrace, instead, used an 
array of H2A–GFP transgenes and CRISPR–Cas9 editing 
to perform lineage tracing in whole zebrafish33. In this 
case, editing was induced early in development through 
the injection of Cas9 into the early embryo. In the 
mature fish, lineage clones could be detected alongside 
gene transcripts through a nested PCR strategy amplify-
ing the GFP genomic DNA sequence performed in par-
allel with scRNA- seq33. This approach provided unique 
opportunities to study the plasticity of cell fates. In one 
experiment, following zebrafish fin regeneration after 
injury, the authors showed that osteoblast progenitor 
clones were able to change fate and give rise to mesen-
chymal cells that populated the regenerated fin. Only by 
collecting both lineage and transcriptome information 
from single cells could such a phenomenon be found, 
highlighting the value of these studies33.

Frieda et al.27 took a slightly different approach to  
lin eage tracing by performing single- molecule fluore scence  
in situ hybridization (smFISH) on lineage barcodes rather 
than scRNA- seq. This provided a unique ability to detect 
the lineage relationships between cells along with their 
spatial context. Applying their method, memory by 
engineered mutagenesis with optical in situ readout 
(MEMOIR), to mouse embryonic stem cells in culture, 

CRISPR–Cas9
A protein–RNA complex that 
allows targeted mutation or 
binding of DNA sequences as 
determined by a guide RNA 
sequence.

Pooled genetic screens
Screening experiments in 
which each individual cell may 
receive a different perturbation 
at random without prior 
separation of groups of cells 
and perturbation treatments.

Lineage tracing
The identification of lineage 
relationships between groups 
of cells through shared DNA 
mutations.

Single- molecule 
fluorescence in situ 
hybridization
(smFiSH). A fluorescence in situ 
hybridization method capable 
of detecting the presence of a 
single molecule (usually RNA) 
through the recruitment of 
many fluorophores to the same 
area. it enables a quantitative 
readout of the number of 
molecules present in a cell.
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the authors were able to validate the lineage relation-
ships inferred using lineage barcodes through time- lapse 
microscopy, providing an important ground truth27.  
If future improvements to MEMOIR can extend this 
in situ lineage tracing to create a profile for a panel of 
endogenous mRNAs alongside a lineage barcode, these 
improvements may provide an incredibly powerful 
multimodal assay capable of simultaneously detecting  
cell lineage, spatial position and transcriptional state.

Extracting additional information from scRNA- seq 
data. Although most scRNA- seq studies focus on tran-
script abundances, these studies can often provide infor-
mation not just about transcript levels but also about 
nucleotide sequence, enabling multiple data modalities 
to be derived from standard scRNA- seq experiments 
without changes to experimental methods. In particular, 
these possibilities include the capture of somatic muta-
tions, genetic variants and RNA splice isoforms (Fig. 2d). 
Somatic mutations can occur randomly in the genome 
and will be inherited by all daughter cells. Lineage rela-
tionships between cells can then be inferred by detecting 
somatic mutations in single cells. Somatic mutations in 
the human brain have been used to reconstruct neuronal 
lineages for a small number of single cells through whole- 
genome sequencing64. Importantly, somatic mutations in 
the brain occur in hot spots linked to active transcrip-
tion and are enriched in coding exons64, suggesting that 
neuronal somatic mutations may be able to be detected 
from scRNA- seq data and used to reconstruct cell lin-
eage relationships along with the transcriptional state. 
Furthermore, many cancers exhibit an accelerated rate of 
somatic mutation, often linked to late- replicating regions 
of the genome. Tirosh et al.65 inferred copy number vari-
ants in melanoma tumours directly from scRNA- seq  
data by averaging the expression values of 100-gene 
stretches over the genome, revealing common patterns of 
aneuploidy in the tumour cells. This allowed single- cell 
genotype information to be integrated with cell transcrip-
tomes to enable a more informative analysis of cancer 
biology65. Similarly, Fan et al.66 identified copy number 
variants and loss- of-heterozygosity events directly from  
scRNA- seq data and applied their method to study multiple  
myeloma samples from patients, revealing transcriptional  
heterogeneity between cancer clones66.

Single- cell analysis also offers a novel approach to 
understand how natural variation in DNA sequence influ-
ences variation in phenotypes such as gene expression 
and cell state. Developing a novel set of scRNA- seq data 
analysis tools to genotype single cells from mixed donors, 
Kang et al.67 performed a genome- wide association study 
with a small cohort of 23 human donors and identified 
expression quantitative trait loci (eQTLs) associated with 
cell- type-specific gene expression variation between 
individuals. Furthermore, they identified a genetic var-
iant associated with altered proportions of immune cell 
types, highlighting the ability of this approach to model 
both gene expression and cell- type frequency as quanti-
tative traits that can be associated with genetic variants67. 
Similar approaches were utilized by van der Wijst et al.68, 
and future studies utilizing much larger cohorts have 
the potential to substantially increase the resolution of 

bulk- level eQTL studies69 to determine the precise effects 
of genetic variation on cell state and function.

Notably, key information on transcript isoforms can 
be obtained from scRNA- seq data, even from methods 
that capture only the 3ʹ end of gene transcripts70, and 
intron retention data can provide a surprising amount 
of information to complement transcript abundance 
measurements. In pioneering work, La Manno et al.70 
demonstrated that the frequency of unspliced introns 
in scRNA- seq transcripts is related to the relative ratio 
of mRNA production to degradation, with newly tran-
scribed genes being more likely to contain introns, 
as they may be captured before being fully processed 
into mature mRNAs. By measuring the frequency of 
unspliced introns, the authors were able to derive an esti-
mate of the rate of change in transcript abundance (RNA 
velocity) and estimate the future transcriptional state for 
each cell. These estimates of future state additionally 
allowed cells to be placed on a pseudotemporal trajec-
tory and solved some of the most difficult problems faced 
by other methods aiming to derive pseudotime measure-
ments from single cells, including ‘rooting’ the trajectory 
(identifying the start and end points), branching and 
dealing with cyclic trajectories70–75. These methods have 
the potential to transform the field of single- cell biology.

Analysis of multimodal data. The rapid development 
of multimodal profiling strategies has created a subse-
quent need for innovative analytical approaches for these 
data types. Although these techniques are largely under 
development, we anticipate that multimodal data sets are 
likely to reveal subtle differences in cell state that cannot 
be captured by a single modality alone (Fig. 3a). This is 
particularly true for scRNA- seq data, for which incom-
plete detection (‘drop- out’) of lowly expressed genes can 
blur fine- scale distinctions, but complementary data 
from the same cells can ameliorate this problem. For 
example, distinct T cell groups (including memory and 
regulatory subsets) can be challenging to distinguish on 
the basis of sparse scRNA- seq information but are read-
ily classified according to the expression of cell surface 
protein markers. This suggests that future methods that 
perform joint clustering on both immunophenotype and 
mRNA levels collected from the same cells may achieve 
dramatically higher resolution in characterizing immune 
cell states20 (Fig. 3b). Similarly, co- assays of the transcrip-
tome and chromatin48 or methylation46 state may reveal 
heterogeneity in the regulatory landscape of individual 
cells, which can bias fate decisions even in advance of 
transcriptional changes.

Statistical approaches for multimodal single- cell 
integration are likely to be inspired by bulk approaches 
(reviewed elsewhere76) that are used to perform joint 
dimensionality reduction on multiple omics data sets to 
identify conserved or divergent patterns and can be read-
ily extended to single- cell multimodal data. For example, 
Argelaguet et al.77 developed a multi- omics factor analy-
sis (MOFA) method capable of identifying a set of factors 
that explain variance across multiple data modalities and 
used their method to jointly analyse bulk genomic, DNA 
methylation and RNA expression data from patients with 
chronic lymphocytic leukaemia. This integrated analysis  

Expression quantitative 
trait loci
(eQTls). genomic loci that 
explain variation in the RNA 
expression levels of genes.

Intron retention
The presence of intronic RNA 
bases in an RNA transcript. 
These bases are usually 
removed by RNA splicing 
shortly after or during 
transcription.

Pseudotime
The ordering of cells along a 
one- dimensional axis 
describing a continuous 
differentiation process.

Joint clustering
grouping cells on the basis of 
measurements from multiple 
data modalities.
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enabled the identification of transcriptional modules  
whose activation was correlated with the somatic 
mutation status for each sample77. Applying MOFA to  
87 single- cell methylation and transcriptome sequenc-
ing profiles46 also identified correspondences between 
modalities and revealed coordinated DNA methylation 
and transcriptome changes during the transition from 
naive to primed pluripotent states in mouse embryonic 
stem cell differentiation77. These findings indicate that 
these methods are also suitable for the analysis of multi-
modal single- cell data and may facilitate improved inter-
pretation of such data sets in the future. As single- cell 
data sets extend far beyond bulk sample sizes, powerful 
approaches for ‘multiview’ machine learning (summa-
rized elsewhere78) are also likely to give rise to valuable 
single- cell analysis techniques.

Multimodal single- cell experiments also provide a 
unique opportunity to study the relationships between 
different components in a cell. For example, simulta-
neous mRNA and protein profiling20,21 can be used to 
readily identify instances in which the modalities are 
poorly correlated, indicating active post- transcriptional 
regulation. Further integration with other measurements, 
such as RNA velocity70, can enable the construction of 
rich dynamic models of protein and RNA production. 
Statistical models can also be leveraged to assess the abil-
ity to predict one modality when given the measurements 
of another (Fig. 3c). For example, Cao et al.48 built linear 
regression models to predict gene expression values from 
chromatin accessibility data and found that including 
distal accessibility sites improved the gene expression 
predictions fourfold compared with models that only 
included cis- regulatory sites. Dixit et al.52 built regular-
ized linear models to estimate the impact of a given set 
of guide RNAs in each cell on gene expression levels in 
order to identify causal drivers of cellular responses and 
to reconstruct transcriptional networks. These models 
could be used to determine the variance in gene expres-
sion explained by the presence of guide RNAs within the 
cells, as well as other covariates52. We therefore anticipate 
that multimodal data sets will yield mechanistic insights 
into complex regulatory processes, including epigenomic, 
transcriptional and post- transcriptional gene regulation.

Integrating single- cell data across experiments
Whereas, in the previous sections, we focused on the 
integration of measurements collected in the same single 
cells, the joint analysis of data sets collected from dif-
ferent single cells poses a key computational challenge 
for single- cell biology. This challenge echoes similar 
needs for ‘batch- correction’ techniques for bulk data 
sets, which are essential for data sets produced across 
different laboratories and experimental workflows79. 
However, existing methods tailored for bulk- level meas-
urements cannot be applied to heterogeneous single- cell 
data, as they cannot distinguish between shifts in the 
proportional composition of cell types and changes in 
the molecular programme within a cell type80,81. Newly 
developed approaches that can first identify shared bio-
logical states (for example, matched cell types) across 
data sets can overcome this challenge (Fig. 4a) and have 
become an area of rapid analytical development.
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Fig. 3 | Computational methods for the analysis of multimodal single- cell data.  
a | Independent analysis of multiple modalities measured from the same group of cells 
can lead to conflicting identification of clusters of cells. Measurements from one modality 
may indicate that certain cells are highly similar, while the same cells appear very 
different when looking at a different modality. In this example, the orange and blue cells 
form separate clusters when analysed on the basis of their transcriptional profile but 
cluster together when analysed according to protein measurements. Similarly , the red 
and purple cells group together based on RNA but separate based on protein.  
b | Joint analysis of multiple modalities measured from the same group of cells can have 
greater power to identify unique cell states. By taking into account information from 
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information is analysed jointly. c | The relationships between data modalities can be 
studied by building statistical models that aim to explain variance in one modality using a 
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Computational integration of scRNA- seq data. We  
recently introduced a method to harmonize single- cell  
measurements collected across data sets as part of 
the Seurat v2 R toolkit80,82. The method first applies 
canonical correlation analysis  (CCA) to identify  
shared sources of variation between the data sets (Fig. 4a).  
The resulting canonical correlation vectors represent the 
presence of shared cell types across data sets as opposed 
to batch effects or data set- specific sources of hetero-
geneity that would typically be captured by a standard 
principal component analysis (PCA) (Fig. 4b). Next, these 
canonical correlation vectors are aligned across data sets 
using dynamic time warping, a nonlinear transformation 
that corrects for differences in cell population density. 
These two steps project cells into a low- dimensional 
space that is shared across multiple scRNA- seq data sets, 
where cells of the same biological state will be located 
close together regardless of their experimental origin80.

A complementary approach, mnnCorrect, accom-
plishes similar goals through the innovative application 
of techniques that have previously been applied to shape 
and pattern matching across images83. This method 
relies upon the identification of mutual nearest neighbours 
(MNNs), representing cells that are mutually closest  
to each other across data sets and therefore are likely to 
represent a shared biological state81 (Fig. 4c). The distance 
between paired MNNs can then be used to compute a 
batch vector, which can be used to correct the original 
gene expression matrix. Importantly, it is not neces-
sary for all cells to have an MNN in order for corrected 
expression values to be calculated for every cell, as the  
batch vector for each cell is calculated by weighting  
the batch vectors of nearby matched cells81.

Both CCA and mnnCorrect enable the integra-
tion and pooling of scRNA- seq data sets generated by 
different laboratories and technologies but from the 
same underlying tissue. By re- analysing data sets from 
the literature (four independent single- cell analyses of 
human pancreatic islets), both approaches successfully 
harmonized the experiments into a single joint data set, 
enabling a robust meta- analysis with substantially greater 
sample size compared with that of any individual data set. 
The resulting increase in statistical power can dramati-
cally boost the ability to discover rare or transcriptionally 
subtle cell states80 and the gene expression markers that 
define them81. These methods therefore represent an ini-
tial proposal to solve a key challenge for both individual 
laboratories and large consortia that seek to construct a 
single reference data set from many individual single- 
cell experiments. Given the exciting potential for these 
types of comparison, there has been rapid development 
of new analytical approaches for scRNA- seq integration, 
with a particular focus on computational efficiency84–89. 
Of particular note, Korsunsky et al.87 developed a novel 
variant of k- means clustering that favours clusters con-
taining cells from multiple data sets, enabling scalable 
integration of 500,000 cells on a personal computer.

Importantly, effective integration of single- cell data 
sets can extend far beyond batch correction (Fig. 4d) 
and enable in- depth comparisons of distinct biolog-
ical conditions at single- cell resolution. For example, 
Butler et al.80 integrated data sets of human peripheral 

blood mononuclear cells (PBMCs) across both control 
and interferon- β-stimulated conditions, identifying  
13 shared cell types between experiments, and systemat-
ically compared their transcriptomes to identify cell- 
type-specific responses to stimulation. This analysis 
revealed that plasmacytoid dendritic cells exhibited a 
striking and unique response to interferon- β, repre-
sented by specific gene modules that could be validated 
by flow cytometry and bulk RNA- seq. We anticipate that 
similar analyses will help to uncover cell- type-specific 
responses to environmental and genetic perturbations 
and even to standardize comparisons between patient 
samples across disease phenotypes and treatment status.

The integration of scRNA- seq data not only applies 
across technologies and conditions but also can extend 
to cross- species analyses as well. Indeed, multiple groups 
have embraced this approach to study the evolution of 
cell states in diverse systems. Karaiskos et al.90 compared 
spatial gene expression patterns between two different 
Drosophila species during the early embryonic stage.  
By building spatial gene expression maps (discussed further  
below), the authors were able to systematically compare 
expression profiles of orthologous genes across species 
and identify evolutionary changes90. Tosches et al.91 
performed scRNA- seq on reptilian brain cells and com-
pared these with mammalian brain cells by computing 
the correlation between averaged gene expression values 
within clusters of each species. This enabled the iden-
tification of strikingly conserved inhibitory subsets, 
alongside poorly conserved excitatory groups, between 
the reptile and the mammalian brain. Similarly, Baron 
et al.92 generated scRNA- seq data sets of pancreatic islets 
in human and mouse tissue, identifying matched subsets 
and regulatory programmes across species, particularly 
among four highly conserved endocrine types92. In this 
example, the matching of cell types across species could 
also be performed using Seurat CCA alignment80,92 in an 
unsupervised manner. Finally, Alpert et al.93 developed 
cellAlign to compare scRNA- seq data sets of embryonic 
development between humans and mice by aligning 
one- dimensional (1D) pseudotime trajectories for the 
two species (Fig. 4e). They found that human embryos 
underwent zygotic genome activation later than mice 
did, whereas many genes that exhibited faster dynam-
ics in mice were involved with protein biogenesis93. 
Although these methods remain at early stages, they 
reveal a potentially exciting future to apply comparative 
biology to single- cell resolution and to identify corre-
lates of human cell types in model organisms for fur-
ther study. However, the accurate identification of gene 
orthologues across species is essential for the resulting 
data integration to be reliable and may become one 
of the most difficult challenges for multispecies data  
integration spanning many millions of years of evolution.

Classification of cells across scRNA- seq data 
sets. The transfer of information in the form of cell- 
type classifications from one experiment to another is 
often highly desirable, as it may outperform de novo 
clustering of cells, and will become more common as 
high- quality, annotated cell atlases are developed by 
the community94 (Fig. 5a). So far, two related methods 
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have been developed that are capable of projecting cells 
onto an existing data set to facilitate the transfer of cell 
labels: scmap- cell and scmap- cluster95. The scmap- cell 
method identifies nearest neighbours across data sets, 
allowing cells to be assigned cell- type labels on the basis 
of the labels of their neighbouring cells95. By contrast, 
scmap- cluster aims to classify cells in a query data set by 
finding the nearest cluster centroids in a reference data 
set defined by correlation- based distance measures or 
cosine similarity. New methods currently under devel-
opment employ singular value decomposition96, linear 
discriminant analysis97 or support vector machines98 to 
classify cells on the basis of an annotated reference data 
set. Notably, supervised annotation may have substan-
tially greater power to resolve cell types than unsuper-
vised clustering does, particularly as the size, depth and 
coverage of reference data sets continue to grow. The 
identification of cell subpopulations through reference- 
guided cell annotation may enable the analysis of closely 
related groups of cells that would otherwise be unable to 
be resolved using de novo clustering methods (Fig. 5b).

Computational integration of multimodal single- cell 
data. The integration of scRNA- seq data with different 
types of single- cell data that do not share common fea-
tures poses a distinct problem that may require different 
methods to address. This is particularly true for the com-
parison of genomic- based measurements (for example, 
chromatin accessibility or DNA methylome data) with 
gene- based measurements (gene or protein expression 
data), as the correspondence between features is unclear. 
However, by collecting cells from similar populations, 
common biological states can be identified across data 
modalities that can assist in the identification of corre-
spondences between modalities. Welch et al.99 developed 

a method to align 1D pseudotime trajectories across 
experiments, named MATCHER, which is tailored to the 
alignment of different data types. MATCHER assumes 
a common, underlying, developmental trajectory that 
similarly impacts both modalities and projects cells from 
different experiments onto a common 1D pseudotime 
space. This projection allows the identification of equiv-
alent cells between multiple experiments without requir-
ing prior knowledge of feature correspondence between 
the modalities. Welch et al.99 applied MATCHER to inte-
grate scRNA- seq data with single- cell methylome and 
transcriptome (scM&T- seq) data46,99 to study transcrip-
tome and DNA methylation dynamics during human 
induced pluripotent stem cell (iPSC) reprogramming. 
This revealed that DNA methylation changes often lag 
behind changes in gene expression99.

Although cell types can often be identified from 
scRNA- seq data by the expression of cell- type-specific 
marker genes, much less is known about the cell- 
type-specific activity of features of other data modalities 
measured in single cells, such as accessible chromatin 
regions. By integrating such data with scRNA- seq, cell- 
type classifications derived from gene expression data 
can be used to guide the assignment of cell- type clas-
sifications in other modalities. Lake et al.15 performed 
single- nucleus RNA sequencing (snRNA- seq) and 
single- cell transposome hypersensitivity site sequencing 
(scTHS- seq) on a variety of matched brain tissue sec-
tions. The authors leveraged single- cell gene expression 
data to guide the assignment of cell types in the chro-
matin accessibility data set by using gradient boosting15. 
By first identifying a subset of corresponding cell types 
in both the scRNA- seq and scTHS- seq data, the authors 
were able to train a model relating gene expression pat-
terns to patterns of chromatin accessibility. They then 
applied this model to classify the remaining scTHS- seq 
cells, whose type could not be determined from the 
chromatin accessibility data alone. These classifica-
tions, obtained through the integration of multiple data 
modalities, allowed a more nuanced interpretation of the 
brain chromatin accessibility data than would be possi-
ble from only one data set, including the identification 
of pathogenic cell types that may underlie common 
genetic diseases15. Similar approaches may also assist 
in the interpretation of single- cell DNA methylation or 
single- cell assay for transposase- accessible chromatin 
using sequencing (scATAC- seq) data sets.

New methods under development can enable 
the cross- modality classification of cells through the 
assumption of equivalent features or the identification 
of features that are assumed to share correlations across 
the modalities88,89. Welch et al.89 developed an integra-
tive non- negative matrix factorization (iNMF) method, 
named LIGER, that is capable of integrating data across 
modalities. They applied LIGER to classify cortical cells 
profiled by single- cell bisulfite sequencing16 using a 
scRNA- seq data set100 generated from the same tissue89. 
Welch et al.89 assumed a negative correlation between 
gene- body methylation and gene expression to integrate 
the different data modalities, thus allowing the cells to be 
jointly clustered. We also recently introduced an integra-
tion method, implemented in Seurat v3, that is capable of 

Gradient boosting
A statistical method that 
produces a prediction model 
for classification or regression 
on the basis of an ensemble of 
weaker prediction models.

Fig. 4 | Computational approaches for integrating multiple single- cell data sets.  
a | Multiple data sets can be integrated computationally to facilitate downstream 
comparative analysis. Shared correlation structure can be detected using canonical 
correlation analysis (CCA) or mutual nearest neighbours (MNNs) identified.  
The identification of either a shared space or equivalent cells across groups can then be 
used to eliminate batch- specific variation, enabling direct comparison between the 
groups. b | CCA aims to identify a set of variables that are maximally correlated between 
two data sets. By contrast, methods such as principal component analysis (PCA) aim to  
find orthogonal variables that maximize the variance explained in a single data set.  
c | The identification of cells that are mutually nearest to one another in a space, defined  
by the gene expression profiles of the cells, allows the identification of biologically 
equivalent cells. Once equivalent cells have been identified across data sets, this 
information can be used to compute a transformation of the original expression data 
that would remove data- set-specific expression patterns. d | Once equivalent cell states 
have been identified across data sets, gene expression values within each cell state can 
be compared across the data sets to identify similarities or differences in gene expression 
patterns between the data sets. In this example, cells in each data set are grouped by 
their cell type, and the expression of selected markers for each cell type is shown.  
The size of each dot corresponds to the percentage of expressing cells in the group, 
while the colour corresponds to the expression level. This makes it easy to visually 
compare expression profiles for cells in both data sets for each cell type. Further 
statistical tests could be used to identify genes that are differentially expressed within a 
cell type or cluster between data sets. e | The alignment of one- dimensional (1D) 
pseudotime vectors from different data sets can allow temporal differences in cell 
trajectories to be removed and equivalent points in the trajectory across two data sets to 
be identified. Gene expression can then be directly compared across the corrected 
pseudotime trajectories to identify similarities or differences in gene expression across 
groups. CC, canonical correlation vector.
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classifying cells across modalities by assuming equivalent 
or correlated features in both modalities88. This allowed 
the classification of cells from scATAC- seq data on the 
basis of annotated cell types from scRNA- seq data from 
a similar tissue and enabled the identification of subpop-
ulations of cells that could not be separated using the 
scATAC- seq data alone. We expect that these approaches 
will enable a more fine- grained analysis of multimodal 
single- cell data in the future and allow the identification 
of cell- type-specific patterns of chromatin accessibility 
and DNA methylation in many different tissues.

Integration of sequencing and spatial data
The spatial organization of cells in tissues often reflects 
functional distinctions between cells and differences in 
cell fate and lineage101. Spatially restricted patterns of 
gene expression give rise to the anatomical complexity 
of multicellular organisms through development, as the 
expression of different gene sets leads cells along differ-
ent developmental paths and produces the precise spatial 
arrangements of cell types that define tissues. Importantly, 
this spatial information is not fully captured by the RNA 
expression profile of cells profiled by scRNA- seq, as cells 
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are dissociated before analyses, typically without reten-
tion of information about their original tissue context. 
Equivalent cell types that may share similar gene expres-
sion profiles can occupy distinct spatial domains in situ, 
and therefore, the loss of spatial information during cel-
lular isolation is a major shortcoming of many single- cell 

analysis methods. The integration of spatial coordinates 
with gene expression data from single cells can resolve 
these experimental shortcomings by combining high- 
resolution gene expression profiles with spatial expres-
sion maps (Fig. 6a). This can be achieved either by using 
computational methods or by simultaneously collecting 
spatial coordinates along with gene expression values by 
quantifying RNAs in single cells in situ.

Several methods are now well established for the 
measurement of spatially resolved gene expression 
in situ. The use of fluorescence in situ hybridization 
(FISH) has become the gold standard for providing 
in situ gene expression data102, and new iterations of 
the technology are approaching 100% detection effi-
ciency29,35,103,104. FISH methods are typically used to 
profile a somewhat small number of cells in a single 
experiment and are not able to detect the full comple-
ment of expressed genes within a single cell102. Newer 
developments employ sequential probe hybridizations 
with error- correcting codes in order to detect hundreds 
of genes in a single experiment or use spatial barcoding 
methods to record spatial information during reverse 
transcription of mRNAs31,104–110. By contrast, scRNA- seq 
methods typically collect no spatial data but are able to 
detect many thousands of transcripts within a single cell, 
for hundreds to millions of cells in parallel3–8,111. Through 
the computational integration of these different data 
types, the strengths of each method can be leveraged to 
enable data transfer between data sets, coupling high- 
throughput scRNA- seq methods with high- resolution 
spatial information.
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Fig. 6 | Integration of spatial single- cell data.  
a | The integration of single- molecule fluorescence in situ 
hybridization (smFISH) data with single- cell RNA 
sequencing (scRNA- seq) data can be done in two ways: 
mapping smFISH- profiled cells onto scRNA- seq clusters  
or mapping scRNA- seq-profiled cells onto spatially resolved 
smFISH data. Mapping smFISH cells onto scRNA- seq data 
allows the transfer of cell- type classifications derived from 
transcriptome- wide gene expression measurements to be 
transferred to the spatially resolved cells (left panel), 
whereas mapping scRNA- seq data onto smFISH- profiled 
spatial coordinates can allow scRNA- seq data from 
dissociated cells to be placed back into their spatial context 
(right panel). b | Following spatial integration, tissue 
architectures can be analysed to determine the cellular 
composition of tissues and the spatial relationships between 
cell types. One way of assessing how cell types are spatially 
organized in the tissue is to look at the local neighbourhood 
surrounding cells of each type. By measuring the average 
spatial distance between cell types, it is possible to learn 
characteristics about the tissue architecture, including 
which cell types are dispersed throughout the tissue  
and which cell types often form local neighbourhoods with 
another cell type, indicating a possible interaction.  
c | By mapping scRNA- seq-profiled cells onto spatially 
resolved coordinates through the integration with smFISH 
data, spatial patterns of gene expression can be predicted 
for any gene measured in the scRNA- seq data set. Through 
these predictions, novel spatial patterns of gene expression 
may be identified through the analysis of genes that were 
not profiled by smFISH. tSNE, t- distributed stochastic 
neighbour embedding.
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The computational integration of spatial gene expres-
sion data gathered using FISH and scRNA- seq has now 
been performed successfully in a number of landmark 
publications. Initially proposed independently by Satija 
et al.82 and Achim et al.112, and later applied to other 
tissues90,113, these computational methods provide inte-
grated spatial expression maps for whole organisms or 
tissues. These studies typically measure the spatial distri-
bution of key genes that are known to exhibit spatial pat-
terning and use these data to build expression models for 
each gene. These spatial gene expression models are then 
used to map single cells captured through scRNA- seq  
back into their spatial context on the basis of the exp-
ression levels of the spatially interrogated landmark 
genes. In the resulting integrated data sets, the spatial 
profile of nearly any gene can then be interrogated at 
high resolution, and the local neighbourhoods inhabited 
by each cell type can be studied82,90,112,113 (Fig. 6b). These 
approaches have enabled the discovery of novel spatially 
regulated genes, as well as the construction of important 
resources for the broader research community (Fig. 6c). 
Further methods have now been developed that enable 
a systematic analysis of spatial expression trends from 
spatially integrated scRNA- seq data114,115. However, the 
computational integration of FISH and scRNA- seq data 
has so far been applied only to organisms or tissues with 
a well- defined spatial structure, such as the early embryo 
and the mammalian liver. Extending these methods to 
more complex spatial structures including mature tissue 
sections or solid tumours will prove challenging. Some 
studies have provided coarse integration of spatial gene 
expression data with scRNA- seq data through the exam-
ination of a small set of genes of interest through FISH 
or immunohistochemical methods following the identi-
fication of cell cluster marker genes by scRNA- seq116,117. 
However, such studies have yet to provide the same level 
of data integration for these tissues as has been demon-
strated for other tissues with a more simplistic spatial 
organization of cells82,90,112,113.

Recently, two high- resolution spatial gene expression 
methods were developed that are capable of detecting 
tens to hundreds of genes in single cells over a large 
2D or 3D spatial region31,35. These methods greatly 
reduce tissue background fluorescence to improve the 
signal- to-noise ratio for gene detection. In one method, 
cyclic smFISH (osmFISH), the tissue section is cova-
lently bound to the microscope coverslip, and then, 
tissue clearing is conducted35. In another method, spa-
tially resolved transcript amplicon readout mapping 
(STARmap), modified DNA bases are incorporated dur-
ing in situ amplification of probes that allow the cDNA 
to be covalently bound to a polyacrylamide matrix, ena-
bling stringent tissue clearing without the loss of spatial 
information in three dimensions31. These methods can 
be applied to gather accurate gene expression informa-
tion in situ for many genes and cells, allowing cells to be 
molecularly typed in situ and the spatial distribution of 
cell types to be assessed (Fig. 6a,b). In both studies, the 
authors applied their method to study the mouse cor-
tex and were able to classify cell types on the basis of 
the expression of a panel of cell- type marker genes31,35. 
Importantly, the spatial distributions of these cell types 

could be further analysed, allowing cells to be grouped 
into anatomical regions35 and the 3D spatial distribution 
of cell types to be analysed31. Further integration of these 
spatial data sets with scRNA- seq data or other single- cell 
data types may provide an opportunity to develop an  
unprecedented level of understanding of the composition  
and function of these tissues88,89.

Perspective
As single- cell technologies continue to grow and mature, 
both the number of parameters that can be measured per 
cell and the quantity of cells and molecules detected will 
inevitably increase. As a result, there is a growing desire in 
the community to integrate single- cell data across experi-
ments or modalities. Large- scale collaborative efforts are 
now underway to build a comprehensive Human Cell 
Atlas that encompasses every cell in the human body and 
accompanying atlases for key model organisms94. Both the 
construction and use of these atlases will require effective 
methods for data integration: first, to integrate data from 
different laboratories, technologies and human donors in 
a way that is robust to significant technical variation and, 
later, to facilitate data transfer and comparative analyses 
between the atlases and new data sets. Just as the initial 
sequencing and assembly of the human genome allowed 
subsequent experiments to be performed more quickly 
and more cheaply than the Human Genome Project by 
transferring information from the genome to new data 
sets through read alignment, the development of the 
Human Cell Atlas will create similar benefits but only in 
the presence of appropriate computational tools for data 
transfer between cells, analogous to DNA sequence align-
ers. Furthermore, we expect that the number of param-
eters able to be measured in single cells will continue to 
grow in the coming years. Nanopore sequencing holds 
much promise for multimodal single- cell applications 
owing to its ability to directly sequence both RNA and 
DNA with long reads and to natively detect nucleotide 
base modifications118–120. Further developments could see 
similar technologies emerge that are capable of detect-
ing other biomolecules, such as proteins. The continued 
refinement of methods for high- resolution spatial cell 
profiling will enable cells to be placed into their spatial 
context, giving important insight into how cell types 
are arranged in tissues. Ultimately, gathering many dif-
ferent data modalities in single cells across a range of 
experimental conditions will allow us to move beyond 
a transcriptome- centric cell view and learn a holistic 
representation of the cell. By studying the relationships 
between multimodal data types within single cells, we can 
begin to uncover the underlying basis for cellular func-
tions and infer causal relationships between modalities.  
A major outstanding scientific and philosophical question  
in biology is ‘what is a cell type?’ If there is an answer to 
this question, it will be found through a nuanced analysis 
of single cells, taking into account different modalities 
and conditions, just as the age- old question of ‘what is a  
gene?’ must be answered through the comparative analy-
sis of DNA sequences across species and a multimodal 
biochemical analysis.
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