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Over the past decade, we have witnessed an increasing num-
ber of studies that have generated multi-omics data by dif-
ferent high-throughput molecular profiling technologies, 

each of them measuring a different layer of cellular regulation. 
Broadly, multi-omics approaches seek to either deliver more robust 
classifiers of biological samples (for example, cancer subtypes) or to 
provide new insights into the circuits of molecular interactions that 
underlie life and disease. The strategies for the analysis of these data-
sets have greatly evolved in time. While initial studies analyzed data 
modalities independently to then combine results1–3, a myriad of 
novel algorithms applying meta-analysis4, Bayesian methods5–7, fac-
tor analysis8, and machine or deep learning9–11 has been developed 
to offer statistically sound solutions to the integrative analysis of the 
multi-faceted data. In addition, numerous reviews have described 
and compared these data analysis methodologies either globally12–15 
or with domain-specific applications16–19. However, less attention 
has been paid to the discussion of the inherent, outstanding and 
sometimes neglected challenges presented by the integration of the 
broad diversity of multi-omics data types. In this Perspective, we 
present these challenges, discuss how they limit the potential of the 
multi-omics data paradigm and suggest points for consideration in 
future computational research. To provide context, we first briefly 
present the general scenario of multi-omics applications and main 
analysis strategies. We then discuss five aspects of multi-omics data 
analysis that we believe represent poorly addressed problems and 
outstanding computational needs. Finally, we address future chal-
lenges for the field, including those brought by the rapid develop-
ment of multi-omics single-cell technologies.

Goals and strategies of multi-omics studies
The concept of ‘omic’ has evolved over time, shifting from an initial 
definition that pertained the measurement of (nearly) all biomole-
cules or molecular events of a given type (for example, genomics for 
DNA, transcriptomics for RNA, epigenomics for DNA modifica-
tions, proteomics for proteins or metabolomics for metabolites) to a 
more extended view that includes other types of high-dimensional 
data, frequently in combination with the molecular profiles, such as 
imaging (radiomics)20,21, FACS/CyTOF (fluorescence-activated cell 
sorting/cytometry by time of flight)22 and large-scale phenotyping 
(phenomics)23,24. Considering this wide definition of the multi-omics  

datasets, we differentiate two major types of application, depending 
on whether the samples or the molecular features are the primary 
target of the analysis (Fig. 1).

One of the main purposes of adopting a multi-omics strategy is 
to make use of the wealth of information provided by different types 
of molecular and non-molecular data to better classify biological 
samples (Fig. 1). This approach is increasingly being adopted in 
medical studies aiming to improve patient stratification—in either a 
supervised or an unsupervised manner—in order to develop preci-
sion treatments25,26. Unsupervised multi-omics integration has the 
potential for capturing complex relationships within these data to 
reveal otherwise unnoticed groups of samples. Integrative cluster-
ing27 and, in particular, latent-space analysis methods, are suited for 
this goal as they are able to extract underlying variation patterns 
from large data structures. Through the years, a great variety of 
algorithmic adjustments have been proposed to accommodate com-
plex experimental designs28,29, preserve their multi-block structure 
in the analysis8,30, dissect shared versus omics-specific variation31–34 
or consider alternative underlying distributions7. For a comprehen-
sive review of unsupervised multi-omics analysis methods, refer to 
refs. 14,15.

Multi-omics data can also be employed to predict response vari-
ables, such as clinical outcomes or other traits. Supervised classifica-
tion methods and regression models are often used to this end35–37. 
Here, a distinction can be made depending on whether sample clas-
sification is of interest, or additionally, the study requires the iden-
tification of biomarkers associated with the response variable38,39. 
Regarding the former, machine and deep learning methods are par-
ticularly powerful, as they achieve high prediction accuracy from 
large multi-omics datasets40. For the latter, however, other analyti-
cal strategies are more suitable, among which dimension-reduction 
algorithms8,26 and regularization techniques (such as Lasso41–44 or 
Elastic Net45 for variable selection) are especially popular. Recently, 
interpretable machine learning methods applied to multi-omics 
data have emerged as a solution that combines both prediction 
power and the ability to identify biomarkers46.

The second asset of the multi-omics approach is the often-claimed 
potential for unraveling regulatory mechanisms encompassing sev-
eral molecular layers. In this case, the focus of the analysis is the 
selection of relevant omics features followed by the inference of the 
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relationships among them (Fig. 1). Some methods developed to this 
end study specific connections using their associated data types, 
such as gene expression and methylation36,46 or gene expression and 
genome variation (that is, transcriptome-wide association studies, 
TWAS)47, while other approaches attempt to sequentially expand 
across omics layers, performing a chained analysis of regulatory 
relationships48. Regression models have also been used in this con-
text, including, but not limited to, regularized regression13, regres-
sion based on latent variables8 and structural equation models49. In 
many of these applications, some level of a priori information of the 
intrafeature relationships, such as genome coordinate proximity or 
trans-acting binding patterns, may be employed. Mechanistic mod-
els provided by the multi-omics adaptation of flux balance analysis 
(FBA)50,51 have extended this concept to the analysis of metabolic 
regulation. While FBA initially focused on metabolic flux modeling, 
the development of variants that integrate transcriptomics52 data 
into the FBA network has shifted the paradigm, and there is also 
growing interest in studying the chromatin–metabolism interplay 
and its implications in human disease using similar approaches53.

Finally, some modeling strategies have been proposed to achieve 
both of the goals described here: outcome prediction and inference 
of the co-regulation networks driving the outcome. mixOmics8 is a 
good example of a dimension-reduction approach that creates an 
outcome prediction model, performs a Lasso variable selection on 
the predictors and returns a co-regulation network of predictors. 
Similarly, the recently published CANTARE54 strategy first fits lin-
ear models to build the interaction network and then uses logistic 
regression to predict the outcome from highly connected subnet-
works and other non-omics variables.

Challenges in multi-omics data analysis
Having established the general goals and analysis frameworks in 
multi-omics studies, we next reflect on some of the pending issues 
in the multi-omics data analysis field that require attention to real-
ize the full potential of combining high-throughput data obtained 
from different molecular layers. These challenges include the het-
erogeneity across omics technologies, the treatment of missing 
values, the difficulty of interpreting multilayered systems models, 
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Fig. 1 | Schematic representation of analysis goals in multi-omics studies. Multi-omics datasets may be defined by any combination of molecular profiling 
data modalities, such as genomics, epigenomics, transcriptomics, proteomics or metabolomics, and include other types of high-throughput data such as 
FACS/CyTOF or radiomics measurements, as well as phenotypic or clinical co-variates. Multi-omics studies can be classified depending on the primary 
goal of the analysis. When the focus is on the samples, these may undergo unsupervised clustering to reveal the underlying structure of the dataset, or 
supervised analysis to predict class allocation of new samples. Features involved in these groupings may be extracted and used as biomarkers. When the 
focus is on the features, the analysis seeks to identify significant relationships among omic variables belonging to different omics types, which can be 
represented as a network.
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Fig. 2 | Challenges and opportunities in multi-omics data-integration. Analysis challenges together with possible solutions are presented for three 
different aspects—data collection, integrative analysis and community distribution—of the multi-omic data-integration paradigm.
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and the problems pertaining data annotation, storage and computa-
tional resources (Fig. 2).

Heterogeneity in signal-to-noise ratio among omics technolo-
gies. Although there is broad agreement over the fact that differ-
ent omics technologies have disparate precision levels, the different 
signal-to-noise ratio across multi-omics measurements (Fig. 3a) is 
often ignored during multimodal study design and method devel-
opment. There is a general lack of studies that compare variance 
figures across omics modalities and how they affect data-inte-
gration efforts55. This is particularly relevant when multi-omics 
methods are used to explain regulatory mechanisms and discover 
feature connections across molecular layers. In particular, combin-
ing omics data with different detection power may result in false 
conclusions, as a lack of detection of an association among two 
features can easily be interpreted as an absence of molecular rela-
tionship instead of as a detection problem. For instance, chromatin 
immunoprecipitation sequencing (ChIP-seq) has less sensitivity 
than RNA sequencing (RNA-seq), which may result in significant 
gene expression changes not being mirrored by chromatin modifi-
cations due to the lower resolution of the chromatin data. In addi-
tion, omics platforms also differ in the number of detected features 
(Fig. 3b) and degree of completeness achieved when measuring 
the targeted molecular space (Fig. 3c). Proteomics constitutes a 

representative example, given its inherent bias to detect abundant 
proteins or to target only those with specific chemical properties, 
while this problem is largely absent in transcriptomics. As a result 
of this differential feature coverage, analyses of the relationship 
between gene and protein expression are constrained by the pro-
teomics data. Differences in both signal-to-noise ratio and number 
of measured features ultimately affect statistical power55, which can 
vary substantially across omics modalities (Fig. 3d). To mitigate 
this, algorithms for estimating the number of samples per omic 
required to achieve a given statistical power or sample classifica-
tion accuracy have been developed55. However, these methods have 
also evidenced the underlying dichotomy of multi-omics experi-
mental design, where complete designs (same number of samples 
per data modality) result in different power across omics, whereas 
equivalent power requirements result in unbalanced (different 
number of samples per data modality) designs. Both scenarios 
constitute important data-integration pitfalls, where the former is 
related to the above-described false-negative-association problem, 
and the latter is related to the fact that many integrative statistical 
methods require complete experimental designs. The field there-
fore strives for new analysis methods that can successfully balance 
both aspects, achieving homogeneous discovery power across mul-
timodal data while also enabling easy-to-implement experimental 
designs.
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Fig. 3 | Comparison of the properties of omics data types. The STATegra dataset, representing a transcription factor Ikaros-induced mouse B-cell 
differentiation time course125, is used as an example. a, Signal-to-noise plot. Segments represent the interquartile ranges of the maximum signal change 
between all pairs of experimental conditions (that is, time points and Ikaros-induced versus control; x axis) and the average standard error across 
conditions (y axis). b, Number of features detected by each technology. c, Differential coverage of the feature space. Each density line represents the 
distribution of the fraction of expressed genes captured by each method. d, Statistical power curves across omics data types as a function of sample size 
calculated using MultiPower software55 for statistical power calculations in multi-omics experiments. mRNA, messenger RNA; miRNA-seq, microRNA 
sequencing; RRBS, reduced representation bisulfite sequencing; DNase-seq, DNase I sequencing.
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As discussed above, statistical power refers to the ability to detect 
a given effect size with sufficient statistical significance using each 
omic modality. However, integrating different types of measurement 
can also increase the power to identify a targeted effect, or as men-
tioned earlier, improve sample classification. This is exemplified by 
the extended TWAS framework, where power for the detection of 
single nucleotide polymorphisms (SNPs) of phenotypic relevance is 
increased by the incorporation of gene expression and DNA meth-
ylation data47,56,57, as both expression quantitative trait loci (eQTLs) 
and methylation quantitative trait loci (mQTLs) inform on the 
functional potential of the genome variants. Similarly, meta-analy-
sis methods combine P values associated with instances of the ‘same 
feature’ measured by different omics modalities, such as promoter 
methylation, gene expression and protein abundance of the same 
coding gene58 or pathway59. These power-enhancement approaches 
rely on the assumption that a coordinated effect acts across molecu-
lar layers following biological principles. Although likely to be true 
in a majority of settings, this strategy might be overly simplistic in 
some cases, and fail to capture complex regulatory patterns or to 
highlight effects that are exclusively associated with one molecular 
layer, such as genome variants affecting protein function but not 
expression, or protein activity levels regulated by post-translational 
modifications. A sound integrative analysis of multi-omics data 
should be aware of these possibilities and carefully ponder how 
the assortment in molecular interdependence may affect analysis 
results.

Missing value imputation in multi-omics data. A critical issue in 
the integrative analysis of multi-omics data is, without a doubt, the 
problem of missing values. Missing values can be caused by features 
failing to be measured in some of the samples, a frequent scenario 
in proteomics and metabolomics data, or by detection difficulties 
inherent to the corresponding technology (for example, very long 
transcripts might be difficult to capture by RNA-seq due to 5′ deg-
radation, or repetitive sequences may be hard to assemble by short-
read DNA-sequencing methods). While the former can be easily 
addressed by imputation methods, that is, by leveraging the cor-
relation structure across omics modalities60, the latter is related to 
analytical platform coverage55 and therefore can solely be alleviated 
by employing alternative technologies, such as long-read sequenc-
ing61. A more frequent and disruptive category of missing values, 
however, arises when a complete set of measurements is unavailable 
for some of the samples in the multi-omics dataset. This is typi-
cally encountered in cohort studies, in which not all individuals will 
have all omics data types collected, and thus the number patients 
with complete records can be a small fraction of the total dataset62. 
Missing samples can also be the result of quality-control procedures 
that may discard complete sets of measurements for some samples, 
or, as previously discussed, that may originate due to power consid-
erations leading to unbalanced experimental designs. This particu-
lar kind of missing values represents a problem for many integrative 
analysis methods, which require matching observations across data 
matrices. Fortunately, some approaches have already addressed the 
problem, usually taking advantage of the fraction of observations 
that provide complete measurements to transfer information across 
samples7,63–65. Among them, MOFA7 analyzes the latent space across 
omics types to impute missing samples, while MultiBaC65 creates 
a multivariate predictive model of the incomplete omics types as 
a function of a shared omics modality. However, in spite of their 
success in creating complete multi-omics datasets and unlock-
ing the utilization of powerful data-integration approaches, miss-
ing value imputation methods risk reducing the variability of the 
resulting dataset66 and creating a data structure that violates inde-
pendence assumptions required by many statistical frameworks. 
As an example of this, when DNA methylation is used to impute 
missing gene expression values, both datasets become dependent 

and therefore are flawed for a subsequent study of the correlation 
between gene expression and methylation levels. Strikingly, these 
issues are frequently overlooked by the multi-omics data analysis 
community, as missing data imputation is still considered to be a 
pre-processing step bearing no relationship to downstream statisti-
cal analysis. Instead, data dependence, as well as the distribution 
requirements imposed by multi-omics data-integration methods, 
should be re-evaluated and verified in those cases where missing 
value imputation is a part of the pre-processing pipeline, and sensi-
tivity analysis should be performed to assess the impact of imputa-
tion in the downstream analyses.

Interpretability of multi-omics models. One of the most attractive 
characteristics of multi-omics approaches is their capacity to deliver 
multilayered systems biology models that bring us closer to under-
standing the complexity of life at the molecular level. However, this 
idyllic view is still far from reality. In most cases, interpretability 
is restricted to the identification of biomarkers and the biological 
processes they represent. Some of the strategies adopted to interpret 
multi-omics data include functional enrichment analyses that are 
either applied to each omics type independently67–70 or in combi-
nation59,71. Even though these methods can successfully report the 
biological processes affected in the study, they also have inherent 
limitations when it comes to providing mechanistic insights across 
molecular layers. The mechanistic view is best achieved when the 
multi-omics data are mapped onto existing pathway models59,72–74. 
However, representation of different types of molecular data on the 
pathway maps is difficult and these representations lack flexibil-
ity for displaying novel regulatory relationships. Data-driven net-
work representations (that is Cytoscape75, 3Omics76 and so forth) 
where each type of omics feature is represented by a different sym-
bol, although popular and versatile, are prone to become too large, 
complex and hard to interpret. In general, extant approaches for the 
visual interpretation of multi-omics models tend to be rather static 
and represent a final analysis result instead of a dynamic mathemat-
ical model. Computational methods that combine the mathematical 
formulation of multilayered regulation with powerful and inter-
active visualization solutions are yet to be developed. Such tools 
would enable both a high-level overview and a detailed mechanistic 
understanding of the modeled molecular systems. Graphical data-
bases such as Neo4j77 are promising solutions, as they are flexible 
to navigate and query, although they still require incorporation of 
statistical tools to permit model-based interrogation of the multi-
omics data78.

Annotation and storage of multi-omics datasets. Despite the large 
amount of multi-omics studies and databases available in the public 
domain, the retrieval of multi-omics data for any given set of biolog-
ical entities is still an open problem. Repositories that collect data 
from different high-throughput experiments around the same topic 
include search options for accessing specific studies or data plat-
forms, but hardly connect data across them79–81. Multi-omics projects 
that do generate multi-omics data on a related set of samples may be 
of very different scope and magnitude, and this hinders their possi-
bilities for following FAIR (findability, accessibility, interoperability 
and reproducibility) principles62,82. Large multi-omics projects usu-
ally develop ad hoc online portals with consolidated metadata anno-
tations that facilitate access to omics data files of the same samples 
(Table 1). However, this is not as straightforward when multi-omics 
projects make use of public repositories for data sharing, which is 
the best available option for small studies. In these cases, datas-
ets are hosted at omic-type-specific repositories such as the Short 
Read Archive (SRA)83, the database of Genotypes and Phenotypes 
(dbGAP)84 or the European Genome Archive (EGA) 85 for sequenc-
ing data, MetaboLights86 for metabolomics or ProteomeXchange87 
for proteomics data. Unfortunately, the multi-omics nature of these 
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datasets is marginally taken into account and hyperlinks are the 
only option to connect the same study across databases. As a conse-
quence, the retrieval of the sample-level-matched multi-omics data-
set is a manual and cumbersome task, when not impossible. One 
possible solution when distributing data across specialized reposi-
tories would be to construct metadata summaries connecting multi-
omics data files from the same samples, and then making them 
available on data commons88, although this is not common prac-
tice yet. While software is available for the integrated annotation 
of multi-omics datasets, either for small laboratories89 or for tech-
nology service providers90,91, these tools are not intended for public 
data sharing. Efforts such as the European Bioinformatics Institute 
OmicsDI92 developed a unified querying system that rapidly finds 
omics datasets responding to the same keyword across reposito-
ries, although linking does not reach the sample level. Other initia-
tives, such as figshare, Zenodo or Lifebit, have also succeeded in 
offering a common storage place. Still, recovery of the multi-omics 
dataset structure is not better supported by these resources, mainly 
due to the lack of a common framework for multi-omics metadata 
annotation. While the standards for omics data sharing have long 
been established93 and minimal information guidelines have been 
defined for most omics types, the concept of minimal information 
about a multi-omics experiment has not yet been developed. Such 
a standard should provide a metadata description framework in 
which the experimental conditions, batches, replication and pre-
processing are defined. Ultimately, this would enable the meaning-
ful connection of samples across omics data files and the effective 
reutilization of the multi-omics data structure.

Performance and scalability challenges. Multi-omics datasets are 
intrinsically large in terms of both features and samples and will 
probably grow in complexity in the future, especially as multi-omics 
studies steadily expand from cross-condition comparisons to pre-
cision-medicine studies. In this novel setting, multi-omics datas-
ets from large cohorts of patients will need to be integrated17,94–96. 
Furthermore, intrinsically large data types such as imaging data are 
also being incorporated into multi-omics studies97, while single-cell 
omics98, in which the number of available observations increases 
exponentially, are likely to eventually replace bulk strategies and 
increase the complexity of this scenario. Luckily, the populariza-
tion of cloud-based services is already alleviating this burden for 
research groups, who rely on cloud servers for storage to ‘make 
the software come to the data’99. This facilitates data sharing and 

provides access to computational resources in a scalable manner 
on demand100, while also saving the cost of set-up and maintenance 
of these computational infrastructures. These two considerations 
make a particularly strong case for fully cloud-based environments, 
as they constitute major advantages to the extensively used high-
performance computing clusters. However, the broad deployment 
of high-performance computing may raise reluctance among mem-
bers of the bioinformatics community. Suitable training programs 
will therefore be essential to provide the necessary skills to make a 
long-lasting transition, as cloud computing is only to become popu-
lar as it evolves into a more powerful, accessible and cost-effective 
service.

Handling large amounts of data also creates new challenges in 
computational power. Regarding software, algorithms need to be 
designed to effortlessly operate on big datasets. The availability of 
multicore central processing units (CPUs) in cloud computing infra-
structures has enabled the development of parallelized algorithmic 
strategies, but performing an efficient implementation of parallel 
computation is far from trivial101. Furthermore, the nature of the 
data is very diverse across omics, which precludes the design of one-
size-fits-all solutions for efficient data handling and may require 
computational solutions to be tailored to each omic102. Regarding 
hardware, fast multi-omics data processing can be assisted by the 
use of sufficiently powerful computing units. Ever since the technol-
ogy emerged, CPUs have begun to be replaced by graphics process-
ing units (GPUs), which enable faster processing of omics data103. 
GPUs have become a particularly interesting alternative given the 
popularization of deep learning methods for the analysis of multi-
omics data9. Deep learning can effectively be used to extract pat-
terns and help gain insight from big data, but these methods require 
frameworks that can be up to the task of providing high computa-
tional power and massive parallelization104. All in all, multi-omics 
data integration could be boosted by a smart combination of effi-
cient software design and the popularization of new, more powerful 
processing technologies as a part of cloud-based services.

Towards a cell-level model of molecular regulation
One of the most promising recent advances in multi-omics has been 
the development of single-cell multi-omics technologies, which opens 
up exciting opportunities for the inference of multilayered models of 
molecular regulation at a better resolution. Indeed, accounting for cell-
type heterogeneity can help refine models of complex biological pro-
cesses, such as tumor progression105, and understand the functionality 

Table 1 | Public projects with linked multi-omics data

Study Available omic types Scope Magnitude Matching level

TCGA126 Gene expression, methylation, protein, 
miRNA

Cancer types >10,000 samples Tumor sample

CCLE127 Genomics, transcriptomics, miRNAs, 
DNA methylation, proteomics, histone 
modifications

Cancer cell lines ~1,000 cell lines Cell line

GTEx128 Genome variation, transcriptomics Human tissues ~1,000 donors Donor and sample

TOPMed129 Genomics, transcriptomics, metabolomics, 
proteomics

Lung, heart, blood, sleep 
disorders; multi-ethnic

>50,000 individuals,
16 multi-omics studies

Donor and sample

ENCODE130 RNA-seq, DNase-seq, miRNA-seq, ATAC-
seq, ChIP-seq, HiC, WGBS, RRBS

Human and mouse cell 
lines and tissues

>10,000 experiments Cell line, tissue, 
primary cell type

BLUEPRINT iHEC131 ChIP-seq, DNase-seq, RNA-seq, 
bisulfite-seq

Human cell types >7,500 datasets Cell types

Athena132,133 Transcriptomics, proteomics Arabidopsis tissues 30 plant tissues Tissue type

Non-exhaustive list of public resources that provide multi-omics data measured on the same set of bio-entities. The last column indicates the type of sample where matching data are generated. TCGA, The 
Cancer Genome Atlas; HiC, genome-wide chromatin conformation capture; WGBS, whole-genome bisulfite sequencing; CCLE, Cancer Cell Line Encyclopedia; GTEx, Genotype-Tissue Expression; TOPMed, 
Trans-Omics for Precision Medicine; ENCODE, Encyclopedia of DNA Elements; iHEC, International Human Epigenome Consortium.
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of tissues and organs with high levels of cellular specialization, such 
as the brain106. Especially interesting within single-cell multi-omics 
are the increasing number of parallel methods, where several omics 
modalities can be generated from the same cell. Currently published 
studies have combined single-cell RNA sequencing (scRNA-seq) with 
the measurement of one or more additional molecular layers, includ-
ing DNA variability, chromatin accessibility, DNA methylation and 
protein abundance (see refs. 98,107 for a comprehensive list of technolo-
gies). Given that cell identities are shared within the dataset, features 
from different modalities can be matched using a wide range of meth-
ods (see ref. 108 for a review), unlocking downstream integrative analy-
ses that could take multi-omics studies to the next level. Even more 
interestingly, single-cell multimodal omics could not only refine bulk 
models but also expand them with new layers whose monitoring has 
been enabled specifically by single-cell approaches, such as clustered 
regularly interspaced short palindromic repeats (CRISPR) perturba-
tions109, spatial information110, lineage reconstruction111 and time-
dependent trajectory data112.

While single-cell multi-omics data constitutes an exciting 
opportunity due to the wealth of biological information it provides, 
integrative analysis faces the same types of challenge as described 
above, which are sometimes exacerbated by the very nature of 
single-cell data. Regarding missing values, for instance, methods 
coupling scRNA-seq with protein abundance can only capture a 
reduced number of proteins, and in a targeted manner113–115, while 
scATAC-seq (single-cell assay for transposase-accessible chromatin 
sequencing) suffers from very low read coverage, leading to high 
sparsity and making data analysis and interpretation challenging116. 
In addition, access to technologies that can generate multimodal 
data is still limited regarding both infrastructure and cost, while 
some published protocols have important drawbacks such as very 
limited cell throughputs or lack of automation (see refs. 98,117 for a 
summary). As a result, current integrative studies usually rely on 
non-parallel methodologies integrating modalities from different 
datasets. This strategy poses the additional challenge of matching 
cell types or states across omics, a non-trivial problem that relies on 
strong assumptions, but could greatly boost the number of single-
cell multi-omics studies by enabling the exploitation of publicly 
available data from different modalities. To achieve this, complex 
integration strategies (recently reviewed in refs. 108,117) have been 
developed, a number of which are dedicated to single-cell specific 
data modalities such as trajectory118 and lineage data119. Another 
interesting way around these limitations is the development of 
methods for the extraction of multiple types of information from 
scRNA-seq data, namely the detection of copy number variation120, 
eQTLs121 or trajectory information (RNA velocity)122. Finally, sin-
gle-cell integrative models need to contemplate technology-specific 
limitations such as cell-level noise and sparsity, which precludes the 
usage of approaches developed for bulk data and calls for innovative 
strategies, while specific methods for the biological interpretation of 
cell and cell-type resolved data need to be developed.

All in all, multiple advances are to be expected in the single-cell 
multi-omics field in the coming years. In addition to solving current 
technological limitations to improve the quality of single-cell mul-
timodal data, the development of missing modalities such as ChIP-
seq, metabolomics and large-scale proteomics would be a valuable 
addition to complete the catalog of available single-cell approaches. 
Furthermore, the potential of combining single-cell omics with cell-
level imaging and morphological profiling technologies, such as 
Cell Painting123, which represents the single-cell counterpart of bulk 
imaging data, is yet to be explored. Another key aspect for the future 
of single-cell multi-omics will be the development of methods that 
can decipher the intricate signals connecting modalities (for exam-
ple, scATAC-seq and scRNA-seq) to generate biologically interpre-
table hypotheses and models of molecular regulation. In line with 
this, the application of causal statistical models such as structural 

equation models or graphical models are a promising field in 
multi-omics regulatory analysis (see, for example, PARADIGM124). 
However, these tools rely on strong assumptions and require a graph 
model to be built based on previous knowledge, as well as enough 
data for the model to be adjusted. Single-cell data might represent 
an opportunity for this type of methodology, provided that other 
problems—such as sparsity—are addressed. Finally, the incorpora-
tion of clinical data from multiple patients into single-cell studies 
and statistical modeling efforts would be the cherry on top of the 
cake for the career towards a cell-level model of molecular regula-
tion that can explain both health and disease.

Data availability
The data used for Fig. 3 were taken from the publicly available 
STATegra dataset125. Pre-processed values used to generate graphs 
are provided together with the code.

Code availability
The code and data used to generate Fig. 3 are available on  
GitHub at https://github.com/ConesaLab/Perspective_Multi- 
Omics_Integration.
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