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Assembling and Validating Bioinformatic Pipelines for
Next-Generation Sequencing Clinical Assays

Jeffrey A. SoRelle, MD; Megan Wachsmann, MD, MSc; Brandi L. Cantarel, PhD

� Context.—Clinical next-generation sequencing (NGS) is
being rapidly adopted, but analysis and interpretation of
large data sets prompt new challenges for a clinical
laboratory setting. Clinical NGS results rely heavily on
the bioinformatics pipeline for identifying genetic variation
in complex samples. The choice of bioinformatics algo-
rithms, genome assembly, and genetic annotation databas-
es are important for determining genetic alterations
associated with disease. The analysis methods are often
tuned to the assay to maximize accuracy. Once a pipeline
has been developed, it must be validated to determine
accuracy and reproducibility for samples similar to real-
world cases. In silico proficiency testing or institutional
data exchange will ensure consistency among clinical
laboratories.

Objective.—To provide molecular pathologists a step-
by-step guide to bioinformatics analysis and validation
design in order to navigate the regulatory and validation

standards of implementing a bioinformatic pipeline as a
part of a new clinical NGS assay.

Data Sources.—This guide uses published studies on
genomic analysis, bioinformatics methods, and methods
comparison studies to inform the reader on what resourc-
es, including open source software tools and databases, are
available for genetic variant detection and interpretation.

Conclusions.—This review covers 4 key concepts: (1)
bioinformatic analysis design for detecting genetic varia-
tion, (2) the resources for assessing genetic effects, (3)
analysis validation assessment experiments and data sets,
including a diverse set of samples to mimic real-world
challenges that assess accuracy and reproducibility, and
(4) if concordance between clinical laboratories will be
improved by proficiency testing designed to test bioinfor-
matic pipelines.

(Arch Pathol Lab Med. 2020;144:1118–1130; doi:
10.5858/arpa.2019-0476-RA)

The rapid advancement in massively parallel sequencing/
next-generation sequencing (NGS) technology and the

commercial availability of NGS assay kits have rapidly
advanced NGS-based clinical testing. The NGS-based
clinical tests evaluate both somatic driver mutations in
cancer, as well as germ-line mutations associated with
congenital disease.

Next-generation sequencing has become an important
diagnostic modality in oncology care by serving as a
companion diagnostic to detect therapeutic and prognostic
gene mutations. In the era of ‘‘personalized medicine,’’
molecular testing is now well recognized as an important
part of routine cancer care at major cancer centers.1 Next-
generation sequencing technology is also applied to the

detection of inherited disease variants, both in affected and
unaffected individuals (carriers). Because many inherited
disease syndromes have multiple genes that could contrib-
ute to a similar phenotype, testing has expanded from
single-gene sequencing to panel testing, with NGS being
the standard.2 When standard panels fail to determine a
likely causative variant, whole-exome sequencing can be
used. With whole-exome sequencing, for a specific individ-
ual, his or her biologic parents can be sequenced as well
(trio testing) in order to minimize variants of uncertain
significance. However, the processing of trio analysis
presents its own bioinformatic challenges3 because many
diseases are complex and might have several variants that
contribute to disease with small effect sizes. Additionally,
because there are few functional annotations outside of the
coding region, evaluating noncoding genetic changes is
difficult without experimental validation.

During the past several years, many well-known institu-
tions have published their development and validation of
clinical oncology genomic tests for tumor mutation profil-
ing, ranging from small gene panels to whole exomes.4–14

Although some of these tests may overlap in basic NGS
chemistry (amplicon versus hybridization-capture based)
and the selected genes analyzed, ultimately each test varies
in several preanalytic and/or postanalytic components.
Kamps et al15 provides an extensive review of NGS clinical
oncology testing that encompasses far more than just DNA
and RNA sequencing.15 In order to streamline the variability
in NGS oncology testing validation and reporting, the
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clinical and molecular diagnostic community established
guidelines for the validation of NGS-based oncology panels
as well as published standards and guidelines for interpre-
tation and reporting of sequence variants in cancer.16,17

Subsequently, guidelines from the Association of Molecular
Pathology were released outlining recommendations for
validating clinical bioinformatic pipelines.18 Although these
guidelines provide detailed recommendations, a user-
friendly version would be helpful to walk through the
process. This review will provide a step-by-step guide to
navigate the many factors of bioinformatic analysis that
affect NGS assay results, including unfamiliar abbreviations
(Table 1).

We will describe the key elements for developing a
bioinformatics workflow, how to validate a bioinformatics
workflow, and how clinical NGS laboratories can ensure
consistency across testing facilities. Considerations for the
development of a bioinformatics workflow include: (1)
choosing a human reference genome, (2) understanding
the limitations of predicting copy number and structural
variation, (3) choosing algorithms for identifying genetic
variants, (4) evaluating publicly available annotation re-
sources, and (5) determining filtering metrics for disease-
causing variants (Tables 2 and 3).

RAW DATA PROCESSING AND MUTATIONAL
PROFILING OF NGS DATA

In somatic testing, the quality of NGS sequence data is
reliant on the quality of the sample, including tumor purity,
DNA or RNA quality, sequence library complexity, and the
efficiency of the hybridization baits. Although bioinfor-
matics protocols cannot be altered to overcome the
limitation of laboratory protocols, postanalytic filtering
performed during report generation is reliant on tumor
purity because it affects the ability to detect variants,
especially if the purity is below the assay limit of detection.
For example, in a sample estimated to be about 30% tumor,
the frequency of driver mutations is expected to be about
15% mutation allele frequency. Limit of detection studies
are performed at validation.

The NGS bioinformatics pipeline starts with raw sequence
data that are produced by the sequencer and formatted by
software provided from the sequencing vendor, such as
Illumina. The pipeline will perform all of the necessary steps
to predict the variants in the sample and annotate those
variants with information about the gene, effect of the
variant (missense, nonsense, splice-site, etc), the frequency,
and finally its association with disease. This process aims to
create a list of candidate variants, which are then manually
curated for clinical actionability (Figure 1). Some clinical
laboratories use ion torrent sequencing technology, which
arrives as kits including accompanying software for analysis,
with little manual work required. For this review, we focus
on Illumina sequencing technology because it is more
commonly used and there are many ways to analyze the
data. Although Illumina has a platform for analysis called
BaseSpace, there are still many choices for analysis for these
types of data, whether the clinical laboratory uses Base-
Space, a cloud computing provider, or an internal comput-
ing infrastructure.

Workflow Step 1: Input Data From Sequencer

Illumina sequencers automatically write raw data into
binary base call format (BCL file). The BCL files are

Table 1. Abbreviations of Technical Terms

Term Abbreviation

Next-generation sequencing NGS

Whole-exome sequencing WES

Binary base call format BCL file

Comma-separated file CSV

Genome Research Consortium GRC

Human genome version 19 hg19

University of California Santa Cruz UCSC

Human Leukocyte Antigens HLA

Sequence alignment map SAM

Hierarchical indexing for Spliced
Alignment of Transcripts 2

HiSAT2

Spliced Transcripts Alignment to a
Reference

STAR

Binary-SAM BAM

Polymerase chain reaction PCR

Unique molecular identifier UMI

Genome Analysis Toolkit GATK

Empirical Bayesian mutation Calling EBCall

Variant call format VCF

Single-nucleotide variant SNV

Insertions/deletions indel

Copy number variation CNV

Structural variation SV

Control-FREE copy number and allelic
content caller

Control-FREEC

Internal tandem duplication ITD

Encyclopedia of DNA Elements ENCODE

National Center for Biotechnology
Information

NCBI

Exome Aggregation Consortium ExAC

Genome Aggregation Database gnomAD

Online Mendelian Inheritance in Man OMIM

American College of Medical Genetics ACMG

Genomics Evidence Neoplasia
Information Exchange

GENIE

Clinical Interpretations of Variants in
Cancer

CIVIC

Annotating principal splice isoforms APPRIS

US Food and Drug Administration FDA

Checkpoint kinase 2 CHEK2

Breast Cancer Type 1/2 Susceptibility
Protein

BRCA1/2

Formalin-fixed, paraffin embedded FFPE

National Institute of Standards and
Technology

NIST

Genome in a Bottle GIAB

Mutation allele frequency MAF

Functional Analysis Through Hidden
Markov Models

FATHMM

Knowledge-based mining platform for
Genomic and Genetic studies using
Sequence data

KGGSeq

Clinical Laboratory Improvement
Amendments

CLIA

Fluorescence in situ hybridization FISH

Health Insurance Portability and
Accountability Act of 1996

HIPAA

Health Language 7 HL7

College of American Pathologists CAP

Limit of Detection LOD

Burrows-Wheeler Aligner BWA
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Table 2. Bioinformatics Algorithms Strengths and Weaknessesa

Step Algorithms Use Strengths Weaknesses Hyperlink

1 bcl2fastq Convert sequencer
files (BCL) to
FASTQ

Works with Illumina products Non-Illumina reagents and
methods are not supported

https://support.illumina.com/
sequencing/sequencing_
software/bcl2fastq-conversion-
software.html

2 TopHat2 Alignment of RNA Widely used Obsolete, was replaced by
hisat2

See hisat2

2 STAR Alignment of RNA Widely used because it is faster
than TopHat2

Less accurate for sequences with
large variation compared to
reference

https://github.com/alexdobin/
STAR

2 HiSAT2 Alignment of RNA More accurate for sequences
with variation

https://ccb.jhu.edu/software/
hisat2/index.shtml

3 BowTie Alignment of DNA http://bowtie-bio.sourceforge.net/
index.shtml

3 BWA Alignment of DNA Alt-aware and more accurate for
sequences with variation

http://bio-bwa.sourceforge.net/

3 samtools Removing
duplicates

Quick runtime Duplicates can only be removed http://samtools.sourceforge.net/

3 picard Marking or
removing
duplicates

Widely used, duplicates can be
marked or removed

https://broadinstitute.github.io/
picard/

3 GATK Germ-line variant
calling

Highest sensitivity for indels,
widely used for germ-line
variant calling

Requires many steps for accurate
calling, with many companion
programs for filtering
improving accuracy, slow
runtime

https://software.broadinstitute.
org/gatk/

3 Samtools Germ-line variant
calling

Highest sensitivity for SNVs,
widely used, slow runtime,
highest accuracy for indels

Low sensitivity for indels http://samtools.sourceforge.net/

3 Strelka Somatic and germ-
line variant
calling

High sensitivity and specificity https://omictools.com/strelka-tool

3 Platypus Germ-line variant
calling

High sensitivity, fast runtime Low specificity https://omictools.com/platypus-
tool

3 Freebayes Somatic and germ-
line variant
calling

High sensitivity for low
frequency variants, seen in
mosaic samples (ie, tumors or
subpopulations)

Low specificity http://clavius.bc.edu/~erik/
CSHL-advanced-sequencing/
freebayes-tutorial.html

3 Mutect2 Somatic variant
calling

Highest sensitivity for SNVs,
widely used, slow runtime

Requires many steps for accurate
calling, with many companion
programs for filtering
improving accuracy, slow
runtime

3 Varscan Somatic and germ-
line variant
calling

Fast runtime Produces many unique calls
compared with 9 other callers

http://varscan.sourceforge.net/

3 EB-Call Somatic variant
calling

Does not provide results in VCF
format

https://omictools.com/ebcall-tool

3 Virmid Somatic variant
calling

Overlapping call set with
Mutect2, EBCall, and Strelka
for somatic calls in 9-caller
comparison, high specificity

https://bioinformaticshome.com/
tools/descriptions/Virmid.html

3 Shimmer Somatic variant
calling

High specificity Low sensitivity https://omictools.com/shimmer-
tool

4 OncoCNV Copy number
variation calling

Higher specificity than CNV-Kit Lower sensitivity than CNV-Kit https://omictools.com/oncocnv-
tool

4 Control-FREEC Copy number
variation calling

Similar to OncoCNV http://boevalab.inf.ethz.ch/
FREEC/

4 CNV-Kit Copy number
variation calling

Higher sensitivity than
OncoCNV

Lower specificity than
OncoCNV

https://cnvkit.readthedocs.io/en/
stable/quickstart.html

5 StarFusion Gene fusion
detection

High accuracy and low runtime
compared with competitors

https://omictools.com/star-fusion-
tool

5 PINDEL Structural variant
detection

High accuracy in detecting
internal tandem duplications
of FLT3

http://gmt.genome.wustl.edu/
packages/pindel/

Abbreviations: BCL, binary base call format; BWA, Burrows-Wheeler Aligner; CNV, copy number variant; EB-Call, Empirical Bayesian mutation
Calling; GATK, Genome analysis ToolKit; SNV, single-nucleotide variant; SV, structural variant; VCF, variant call file.
a All URLs have an access date of October 29, 2019.
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converted into FASTQ files using a program called bcl2fastq
(provided by Illumina) in order to generate genomic
sequence reads that are used by most analysis programs.
FASTQ files are text files that contain a quality score (Phred)
for each base that can then be used for sequencing
alignment. A Phred quality score is calculated based on
the probability that the base is incorrect, where a score of 20,
the typical cutoff, represents a 1% probability of being
incorrect; higher scores have higher quality. These quality
scores are considered in downstream analysis so that bases
with a higher quality score are given higher weight in
genotype prediction. Multiplex sequencing allows for
sample pooling within the same run. Each sample contains
its own unique adapter sequence that can then be used to
separate reads by sample/adapter in a process called
demultiplexing. These adapter sequences, along with other
information about the sample, such as sample ID and
project name are passed to the bcl2fastq program in a
comma separated (CSV) file. The automatically generated
FASTQ files are now ready for bioinformatic analysis.19

Workflow Step 2: Alignment of DNA and RNA Onto a
Human Reference Genome

Raw NGS data processing ensures each strand of
sequenced DNA matches to its corresponding location in
the genome. The accuracy of read alignment is dependent
on the reference genome and alignment algorithm. There
are currently 2 available versions of the reference human

genome: GRCh37 (Genome Reference Consortium human)
(hg19; human genome version 19), released in 2009, and
GRCh38 (hg38), released in 2013. Prior to 2013, there were 2
slightly different human assembly versions released by the
Genome Research Consortium (GRC) and UCSC (another
curator of the human genome, University of California
Santa Cruz). These assemblies (GRCh37 and hg19) varied in
alternative chromosomes and scaffolds. Since the latest
release, the GRC has been the primary source for human
genome assemblies; therefore, the UCSC browser version
(hg38) matches to avoid confusion. GRCh38 improved upon
the earlier genome builds by (1) correcting errors, (2) filling
nucleotides into ambiguous repeat regions (ie, centromeres)
with model sequence, and (3) including alternative loci,
which represent differences in human population, such as
human leukocyte antigen (HLA) haplotypes. As a result of
these improvements, the use of GRCh38 as the reference
genome reduces errors in variant detection.20,21 In an effort
to further reduce false-positive rates, both genomes include
decoy sequences, which act as a ‘‘sponge’’ for the most
commonly misaligned reads. However, many clinical
laboratories have been slow to adopt this new reference.
This is likely due to several reasons, including the fact that
many variant annotation databases themselves have not
converted their positions to the new build. Furthermore,
making the change of reference genome would be a
considerable update, requiring a revalidation of the pipeline.

Table 3. Considerations for Workflow Steps

Step Feature Considerations

2 Genomic assembly (GRCh37, GRCh38) Switching to a new genome can be onerous for a new lab, but the newest human
genome assembly has been shown to be more accurate, thus reducing false-
positive variants

2 Alignment algorithm The human genome has many repeated sequences and these repeats cause
misalignments and therefore errors in variant detection

2 Duplication Errors in PCR can introduce false positives into the data set. These can be
removed using algorithms for marking and removing these duplicates. They
cannot be removed with amplicon-based panels

3 Variant calling type (somatic/germ line) Germ-line variant detection algorithms are not designed to detect low-frequency
variation. If normal tissue is available, algorithms for somatic variant calling
have a higher sensitivity

3 Variant calling algorithm Variant calling algorithms vary widely in sensitivity and specificity. Filters must be
established experimentally to maximize sensitivity and specificity

3 Detecting artifacts ML can be applied to detecting false positives, but it must be trained on validation
data to maximize accuracy

4 CNV detection The sensitivity of CNV calling is less than 90% for most clinical assays

5 SV detection The sensitivity and specificity of SV calling are low for most clinical assays,
because most clinical assays do not have uniform coverage of capture along the
whole genome. Research group will use low-coverage whole genomes, which
can be costly in a clinical assay

6 Variant annotation and effect Defining the chromosomal locations of genes and exons is not trivial. Each gene
annotation will have some inaccuracies. Choosing one over another might
change a variant effect from an intron mutation to a coding mutation

6 Population studies Population studies can help you filter out common variants, although some
pathogenic variants can be in .1% of certain populations

6 Population studies Some populations of people are not well represented in population databases

7 Identifying clinically actionable variants There is no complete database of clinically actionable variants available publicly
or commercially

7 Identifying clinically actionable variants There is no database of FDA-approved drugs and their clinical and molecular
indications

7 Identifying clinically actionable variants Clinical trial databases are difficult to search, and matching of patients cannot be
automated because most information is contained in paragraphs of text

Abbreviations: CNV, copy number variant; FDA, US Food and Drug Administration; ML, machine learning; PCR, polymerase chain reaction; SV,
structural variant.
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Algorithms are needed to actually perform the sequence
alignment, and many are publicly available, with each
having its own advantages and limitations. Short-read
alignment (,200 bp mapping) to a reference genome is
relatively easy, and several publicly available algorithms are
available. For RNA (transcriptomics), mapping sequences
over a large gap is necessary because of the splicing out of
introns, therefore this requires splice-aware algorithms.
These algorithms include TopHat2, HiSAT2 (Hierarchical
indexing for Spliced Alignment of Transcripts 2), and STAR
(Spliced Transcripts Alignment to a Reference), and they can
map RNA reads from exon to exon across the spliced-out
introns22–24 (Table 2). However, in order to identify clinically
significant chromosomal translocations, which involve even
larger breaks, a modified version of STAR, STAR-Fusion,
can be used25 (Table 2). For variant calling, HiSAT2
generates more accurate alignment compared with other
splice-aware aligners, likely because of its ability to model
common variation as a graph reference.26 Aligners for DNA,
such as Bowtie2 and BWA (Table 2), are not splice aware,
and thus they cannot split reads to improve the alignment.27

For variant detection, BWA (Burrows-Wheeler Aligner)
provides a more accurate alignment compared with
Bowtie2, and therefore more accurate variant calls,28 making
it popular for clinical applications. BWA is an alt-aware
alignment tool, meaning it can align to the alternative
chromosomes and translate their location to chromosomes,
which could explain its improved accuracy. Overall, these
programs accurately place sequence data (alignment) onto
the proper genome location (mapping) to produce sequence
alignment map (SAM) or Binary-SAM (BAM) alignment

files. SAM files are very large (gigabyte scale), whereas BAM
files are a compressed format that is more efficient for
software to process.

Sequencing data must also include quality metrics of the
alignments, including: (1) depth and breadth of coverage,
(2) mean mapping quality, and (3) mapping rate. The depth
and breadth of coverage are the number of reads (depth)
that cover each base on average and the percent of the
targeted region covered by reads.16 In cancer there are
subpopulations of cells that might contain clinically
actionable variants. Therefore, higher coverage sequencing
is required to detect low-frequency variation. Because
coverage is not even, it represents a wide distribution. If
the limit of detection for the assay is 5% mutational allele
frequency, 5 alternate reads will be required to detect this
variant with 100 reads. However, in a sample with 1003
median coverage, 50% of the positions have coverage of less
than 100 reads. The targeted region of the clinical assay is
the region of the genome, such as the exons of genes of
interest, that the assay aims to detect. The mapping rate is
the percent of the reads that map to the genome. A large
number of unmapped reads can result from reads that are
too short (poor quality marker) or from an insertion not in
the primary assembly. The mean mapping quality reflects
the probability that a read is misplaced (misaligned
compared with the reference genome). Perfectly mapped
reads have a mean mapping quality score of 60 (1/10�6 ¼
0.0001% chance the alignment is incorrect), whereas a score
below 30 is generally considered unacceptable (1/10�3 ¼
0.1% chance the alignment is incorrect).

Figure 1. Graphical overview of bioinformatic pipeline from data generation to generation of a clinical report. Step 0 occurs automatically by
generating a BCL file from the instrument and demultiplexing multiple samples in a flow cell lane; because it requires no hands-on effort, it is pre–step
1. Step 1 takes FASTQ files that contain sequence and quality information and align the information to a reference genome to produce a BAM (Binary
Alignment Map) file. In steps 2–4, the BAM file is processed by your choice of variant caller to yield information on single-nucleotide variant (SNV),
indel, copy number variant (CNV), or structural variant (SV). Step 5 is a semimanual process where these variants are named and evaluated against
publicly available databases for clinical significance. Lastly, variants must be manually evaluated for quality control (QC) and prioritization of
variants.
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Gene panel sequencing involves either a targeted
amplicon-based polymerase chain reaction (PCR) amplifi-
cation or hybridization-based bait capture of genomic
regions. In the hybridization-based bait capture assay,
PCR duplicates arise and represent a technical artifact of
the assay and not true biologic frequency. The PCR
duplicates are identified as having the same start and stop
sites. Typically, duplicates are marked for removal using
programs like Samtools29 and Picard30,31 (Table 2). Intro-
duction of short barcode sequences (unique molecular
identifiers, 4- to 8-bp–long) reduces PCR error due to
duplicates, especially for deep sequencing. In contrast,
amplicon-based methods use primers to target regions,
and duplicates cannot be removed.

Workflow Step 3: Identifying Single-Nucleotide, Insertion,
and Deletion Variants in DNA

Variants in DNA are principally tested for inherited and
acquired diseases. Germ-line variants are inherited and
present in an individual’s genome from conception. Variants
that arise after conception are generally referred to as
somatic. Because there are 2 copies of each chromosome,
germ-line variants are designated ‘‘alternate alleles’’ and
identified by comparison to the reference genome and
calculated to be heterozygous—2 different nucleotides at the
same allele—or homozygous—the same nucleotide at the
same allele. Comparison of germ-line variants of an
individual to those of his or her biologic parents is helpful
for determining the significance of a variant. If an unaffected
parent shares the same variant, it is likely not disease
causing (benign), but if the variant is not in either parent
and is new (de novo) there is a high likelihood of it being
disease causing (pathogenic).17 On the other hand, somatic
mutations may represent a subpopulation of cells that are
identified by comparison to a matched patient control (skin,
saliva, or blood, depending on the type of malignancy, ie,
skin for hematologic malignancy). Somatic variants are
detected using the frequency of mismatches and gaps in the
alignment at each base. For example, a germ-line variant is
likely to be called if at a particular position 50% of the reads
is an A, whereas the reference is a G.

Algorithms for germ-line mutation detection for single-
nucleotide variants (SNVs) and insertions/deletions (indels)
include GATK (Genome Analysis ToolKit),32 Samtools,29

Platypus, Strelka,33 and Freebayes (Table 2). Each of these
methods uses a slightly different model for determining
genotype likelihood that includes the quality scores of the
sequences and of the alignment as well as the depth of
sequencing and the location of alternate bases in reads.
Therefore, each method has been shown to have differences
in sensitivity and positive predictive value.34–36 Approaches
that combine these methods to identify variants with
multiple levels of supporting evidence have been shown to
improve accuracy.36

Somatic mutation detection compares the frequencies of
alternative bases at each chromosomal position to a normal
matched control in a tumor specimen, usually from the
same person. Algorithms for somatic mutation detection for
SNVs and indels include MuTect2,37 VarScan,38 EBCall
(Empirical Bayesian mutation Calling),39 Freebayes, Vir-
mid,40 and Shimmer41 (Table 2). Like germ-line variant
detection, these packages have slightly different models for
determining a somatic mutation. Therefore, these packages
can differ greatly, with little overlap among the various
methods.36,42 Recently, EBCall, Mutect2, Virmid, and Strelka

have been shown to be the most reliable somatic variant
callers for both medium- and high-coverage sequencing
data of SNVs. EBCall demonstrated the highest sensitivity
rate for indel identification.42

The main source of false-positive variant predictions
stems from errors in the replication introduced during
PCR and sequencing. Because of the biased nature of PCR,
consistent errors called artifacts can occur. Machine learning
has been applied to the discovery of sequencing artifacts in a
modeling algorithm called Cerebro.43 Cerebro uses various
quality metrics of variant calls, including alignment and base
quality scores, distributions of alternate and reference bases,
and genomic context. As with variant calling, clinical
laboratories must train the models on their data to achieve
maximal sensitivity and specificity.

After variant calling software packages analyze the data, a
file is produced called variant call format (VCF). This file
contains the information about the chromosomal loci for the
variant, the reference base(s), the alternate base(s), a score,
statistical metrics on the call, and the genotype for each
sample. There are many tools, such as vcftools44 and
SnpSift,45 that can filter variants based on metrics contained
in the VCF file.

Workflow Step 4: Identifying Copy Number Variation
in DNA

Detecting copy number gains or losses is important in
both germline and somatic testing. Although this can be
accomplished by NGS technology, the detection of copy
number variants (CNVs) is complicated by: (1) biases in bait
capture,46 leading to uneven coverage across exons, (2)
sparse breadth of coverage across the chromosome because
only targeted genes are captured, and (3) decreased
sensitivity in heterogeneous tumor samples.47 Similar to
SNVs and indels, there are many different algorithms for
detecting CNVs; these include VarScan2,48 CNVKit,49

Control-FREEC (Control-FREE Copy number and allelic
content caller),50 and OncoCNV46 (Table 2). OncoCNV is
designed for amplicon data and includes normalization
methods specific for the biases in PCR methods. These
algorithms rely on assessing the differences in read coverage
in a particular region compared with the average of the
surrounding regions and the allele frequency of the alternate
allele. Because the coverage of targeted regions is not
uniform for gene panels, the coverage is normalized to
control samples without known variants. An independent
comparison of these methods using simulated data showed
that VarScan2 had more false positives compared with other
methods, OncoCNV and Control-FREEC had similar
performance, yet OncoCNV performed better with a panel
of greater than 3 normal controls.51 In this sample study, a
comparison of accuracy of these methods on whole-exome
data showed that CNVKit had a high sensitivity compared
with OncoCNV, but a lower specificity. The accuracy of
these methods is improved with high tumor cell percentage,
low heterogeneity, and a panel of normal controls for
comparison.

Workflow Step 5: Identifying Structural Variation
in DNA and RNA

Determination of structural variants (SVs) has tradition-
ally been performed by cytogenetics, but NGS clinical assays
now detect some gene fusions because of advances in RNA-
Seq. However, the prediction of SVs has a high false-
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positive rate. This is because SV prediction relies on
discordant read pairs, which only represent a small fraction
of the total reads. Discordant read pairs are the read pairs
that align to different chromosomes, for translocations or at
distances different than expected by the average fragment
sizes. Detecting translocations by DNA sequencing is
challenging because the break points often lie in large
intronic or intergenic regions that would require whole-
genome sequencing to capture the break point. RNA-Seq
overcomes the challenges associated with DNA sequencing
by finding abnormally joined exons. Algorithms such as
STAR-Fusion,52 nFuse,53 and EricScript54 use read pairs
aligned to different genes to identify translocations55 (Table
2). STAR-Fusion has been shown to have high accuracy and
lower runtime compared with its competitors.55 Other
clinically relevant structural variation includes large inser-
tions, large deletion, and internal tandem duplication.
Methods for identification of SVs include Pindel,56 Lumpy,57

and Delly58 (Table 2). These methods use split reads (paired
reads that align to 2 different regions) to identify structural
variation, which work well with high-coverage data, as in
most clinical applications. Lumpy and Delly also use
discordant read pairs, reads that map to distances greater
than expected for the average library size, to identify
structural variation. Internal tandem duplicates for FLT3
(fms-like tyrosine kinase 3), a gene commonly mutated in
acute myeloid leukemia, are challenging to detect by NGS
methods, but Pindel has been shown to accurately identify
them.59 In general, the accuracy of SV algorithms decreases
as the size of the SV increases. Bioinformatic algorithms
along with RNA-Seq have advanced to allow SV detection,
albeit with lower sensitivity and specificity than SNV
detection.60 Long-reads sequencing methods, including
Pac-Bio and Oxford Nanopore, present the opportunity to
improve SV prediction.61 However, these methods are not
adopted for clinical application because these techniques are
expensive, they have a higher sequence error rate, and few
bioinformatics tools exist to integrate these results with
Illumina sequencing for clinical applications.

Workflow Step 6: Annotating Genetic Variation and
Determining Variant Effects

Once a genetic variant has been identified, its significance
in the context of a gene must be determined and this
process is called annotation. Annotation depends on
whether the variant lies within the transcribed portion of
the gene. Thus, although GRCh38 is a reference genome,
there are 2 reference transcriptomes: Gencode and RefSeq.
Gencode was developed by The ENCODE project (Ency-
clopedia of DNA Elements), which is maintained by
Ensembl, and RefSeq (Reference Sequence) was developed
and is maintained by the National Center for Biotechnology
Information. These databases differ mostly in their annota-
tion of (1) noncoding genes and (2) alternatively spliced
isoforms of coding genes. Through combinations of
computational modeling and experimental evidence, the
boundaries of transcribed exons are defined by Gencode62 or
RefSeq.63 The annotation process determines the gene, the
amino acid, and subsequent codon change for a specific
variant. Other types of functional changes, such as those in
promoters and regulatory regions, are more difficult to
predict. Although most clinically significant genes are
similar in RefSeq and Gencode, discrepancies do still exist
largely because of the fact that RefSeq uses many
experimentally modeled transcripts and Gencode relies

more heavily on data derived from RNA-Seq experiments
in order to define exonic boundaries.64 Studies describing
genetic test result differences between Gencode and REfSeq
annotation are limited.65 Resources such as APPRIS
(annotating principal splice isoforms)66 or transcript-level
support can be used to determine the primary transcript for
aid in reporting the most likely gene effect.

Many of the variants identified are actually relatively
common polymorphisms that occur as a part of normal
genetic variation. When a variant is present at more than 1%
allele frequency within a population, this is evidence that
the variant is likely benign. Conversely, pathogenic variants
should confer reduced fitness and be less than 1%.
However, there are several founder mutations close to 1%
allele frequency that are still pathogenic within a population,
such as CHEK2 (checkpoint kinase 2) c.1100delC (Europe-
ans) or certain BRCA1/2 (Breast Cancer Type 1 Susceptibility
Protein) mutations in Ashkenazi Jewish people.67 Popula-
tion sequencing of healthy individuals has been performed
to address this very issue. The Exome Aggregation
Consortium (ExAC; more than 60 000 healthy individuals)
and genome Aggregation Database (gnomAD; with more
than 126 000 individuals) performed whole-exome or
whole-genome sequencing of healthy individuals to better
estimate allele frequency of normal human variation.
However, these databases are heavily populated by individ-
uals of European ancestry. Although efforts to improve
genetic diversity added many of Asian descent, there are still
fewer individuals of Latino or African ancestry.68 The 1000
Genomes project helps supplement this deficiency some-
what by determining the genetic variation in more than
3000 individuals from multiple, diverse subpopulations in
Asia, Europe, Africa, and the Americas.69 These population
databases are a useful tool in first assessing whether a
variant is a benign polymorphism or warrants further
investigation.

There are a number of clinical databases used to
determine the clinical significance of genetic variation. The
Online Mendelian Inheritance in Man (OMIM) database
catalogs genes that are associated with mendelian genetic
diseases, but many incomplete associations are common.70

ClinVar is a clinical database that collects thousands of user-
submitted variant classifications.71 Previous critiques about
the quality of interpretations have subsided with a large
influx of interpretations that are frequently concordant.72

Few labs submit supporting evidence, but the inclusion of
specific data like PubMed citations is very helpful when
coming to a conclusion on an interpretation. Most of the
variant submissions in ClinVar are more relevant to
inherited genetic disorders, but they can also be helpful in
cancer. The final assessment of variant classification for
inherited disorders must rely on the American College of
Medical Genetics guidelines.73

Several databases specific to somatic genetics of cancer
exist to aid in variant classification. Cosmic is a database of
somatic mutations in cancer. Instead of classifying variants,
this database displays histograms of amino acids frequently
mutated within a gene for a variety of tumor types. Because
gain-of-function mutations often drive cancers, mutational
hotspots are seen with a high frequency, providing evidence
for selection of these somatic mutations as cancer drivers
(eg, KRAS commonly has activating mutations in codons 12,
13, and 61). Similar to the GnomAD project for health
populations, the Genomics Evidence Neoplasia Information
Exchange (GENIE) project has aggregated data from several

1124 Arch Pathol Lab Med—Vol 144, September 2020 NGS Bioinformatics Design and Validation—SoRelle et al



large cancer genome studies and has accumulated genetic
and clinical data for more than 60 000 patient samples.74

Because of its large sample size, cancer variants identified in
clinical NGS testing can be compared to those in GENIE to
determine if variants found within the same tumor type
could be possible driver mutations. The Clinical Interpreta-
tions of Variants in Cancer (CIVIC) database is an expertly
curated database that provides a literature review of specific
genetic variations in cancer, including variant function,
prognosis, and potential treatment.75 OncoKB is a knowl-
edge base that also provides annotation describing the
biologic and clinical functions of genes and variants in
cancer. OncoKB ranks clinical actionability by level of
evidence sources, including US Food and Drug Adminis-
tration (FDA) labeling, National Comprehensive Cancer
Network guidelines, scientific literature, and expert cura-
tion.76 Somatic mutations should receive a tier 1 to 4
assignment based on their therapeutic, prognostic, or
diagnostic significance.17

In addition to manually curated databases of clinical
significance and actionability, there are bioinformatically
derived databases and tools that aim to predict whether a
variant will lead to a loss-of-function mutation. These
metrics use evolutionary metrics using (1) functional
prediction, which uses sequence substitution matrices,
similar to what is used for protein alignment algorithms;
(2) conservation, which calculates a score derived from
conservation across species; and (3) combinatorial method,
which combines functional and conservation scores. A
comparison of these scores found that FATHMM (Func-
tional Analysis Through Hidden Markov Models)77 and
KGGSeq (Knowledge-based mining platform for Genomic
and Genetic studies using Sequence data)78 had the highest
accuracy to classify variants.79 M-CAP (Mendelian Clinically
Applicable Pathogenicity score) is a metric that was
developed specifically for clinical interpretation.80 Although
computationally derived metrics are useful in variant
prioritization when experimental evidence is lacking,
differing annotation among the various metrics can be
difficult to interpret.

Workflow Step 7: Prioritizing Genetic Variation

Finally, once variants have been predicted, annotated, and
classified, the list of candidate disease-causing mutations
should be prioritized. First, poor-quality variants are filtered
out, based on: (1) low read depth, usually less than 10; (2)
low alternate read frequency, less than 30%; and (3) poor-
quality scores, such as average mapping score or high strand
bias. For mendelian genes, testing is usually performed on
panels where all genes are related to the phenotype
prompting testing (eg, epilepsy panel or maturity-onset
diabetes of the young panel). However, when a whole-
exome approach is used, parental testing is required (trio
testing) to help rule out shared variants that are unlikely to
be disease causative. The exception is when the proband
inherits 2 loss-of-function variants for a recessive condition
that would have no phenotype in the parents. When these
variants are the same, a patient is homozygous, but if the
variants are at different positions, this mode of inheritance is
called compound heterozygous. Because whole-exome
studies look at all genes, candidate mutations are further
examined to see if the gene or the variants have a known
association with the phenotype using the OMIM and
ClinVar annotations. For most conditions, only variants
that cause changes to coding in protein-coding genes are

considered candidates for causing disease, because little is
known about the functional impact of noncoding or
synonymous coding changes.81

Compared with germ-line diagnostics, testing for genetic
variants in cancer is primarily focused on finding targetable
variants that can be treated therapeutically. Thus, the highest-
priority variants are those that have FDA-approved drugs for
the specific cancer type. A lower-level finding is a variant with
an approved drug for a different cancer type. It was hoped
that targeting a mutation in one cancer type would be
analogous for other cancer types; however, the disparate
results of BRAF inhibitors for V600E mutations in melanoma
and colon cancer (80% versus 5% response rate) proved
targeted therapy cannot be universally applied based on
genetic findings. Thus, annotations from OncoKB, ClinVar,
and GENIE can be used to determine the function of a cancer
mutation, but they are not meant to replace manual curation
that often involves literature searches. As with the example
above, the significance of a variant in one cancer type cannot
be extrapolated universally, and annotations must be in
formed by the latest information in a field that is changing
rapidly with new discoveries about genes, variants, and
treatments. Lastly, any filtering of variants must be validated
to determine how the filters affect sensitivity and specificity.
The reduction of false positives can be detrimental if the
sensitivity of clinically actionable variants also decreases.

VALIDATING THE BIOINFORMATICS PIPELINE

The purpose of validation is to determine the accuracy and
reproducibility of the bioinformatics pipeline, in synthetic,
reference, and clinical samples, similar to the type expected
to be tested in the clinical setting (Table 4). Optimization of
the pipeline should be performed during pipeline develop-
ment and the workflows should be ‘‘lock-down’’ at the
validation stage, and therefore not changed with different
sample or variant types. Validation must be performed for a
variety of sample and variant types. For example, if the
expected sample types are blood, formalin-fixed, paraffin
embedded (FFPE) tissue, and saliva, then the validation
should include all of these samples’ types with a variety of
variant types expected to be examined in the assay,
including SNVs, indels, CNVs, and SVs. Additionally,
validation also ensures that there is no technical variation
among lab equipment. Although the number of samples
used in published validations has varied widely from 5 to
nearly 300,77 the samples should include at least 50 clinical
samples and several references or synthetic samples that can
test the sensitivity, specificity, limit of detection, and
reproducibility of the assay.

There are 3 sections to the validation: preanalytic, analytic,
and postanalytic, which are laid out in 5 steps (Figure 2). The
preanalytic section of the validation (validation steps 1 and
2) ensures that the validation experimental design is
consistent with the expected sample types (FFPE, blood,
and bone marrow) and the expected variants the assay is
designed to detect. The analytic section (validation step 3)
ensures that the bioinformatics workflow performs as
expected with the different variant types that will be
reported in the assay. Finally, the postanalytic section
(validation steps 4 and 5) ensures that data are transmitted,
displayed, and stored properly.

Depending on the application (germ-line versus somatic
sample testing), the minimum coverage may range from 503
to 5003. In general, the validation not only serves to ensure
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that data can properly and faithfully transit from the
sequencer through all networks, hardware, and software
consistently for a variety of variant types, but also ensures
that the bioinformatics pipeline is tuned to the clinical assay
(Figure 2).

Validation Step 1: Reference Sample, Engineered Samples,
and Synthetic Samples

Reference samples provide a truth set, allowing evalu-
ation of sensitivity and positive predictive values for the

clinical assay. These can be purchased commercially or
developed by the clinical laboratory. For an NGS assay, the
National Institute of Standards and Technology (NIST)
reference sample, NA12878, is a gold standard sample that
has been sequenced as part of the NIST Genome in a Bottle
(GIAB) initiative and part of the Illumina Platinum
Genome project.87 This sample has been well studied and
established as a standard of truth distributed by the GIAB
consortium and Illumina. Using high-confidence regions of
this genome, the sensitivity and specificity of germ-line

Figure 2. Validation of a clinical bioinformatic pipeline begins with (A) performance evaluation using a combination of reference material and
clinical cases to determine the accuracy and precision of variant calling compared with gold standard techniques. B, Standard operating procedures
and documentation must be created for each step and each component of the process. C, Revalidation to improve limitations of the bioinformatics
pipeline requires multiple samples to go through the same preceding process. Abbreviations: CNV, copy number variation; EHR, electronic health
record; FFPE, formalin-fixed, paraffin embedded; FISH, fluorescence in situ hybridization; GIAB NIST, Genome in a Bottle National Institute of
Standards and Technology; NGS, next-generation sequencing; SOP, standard operating procedures; SV, structural variant.

Table 4. Dos and Don’ts

Practical Tips DON’T DO

Hardware use during validation DON’T perform validation studies on one
computer system, then attach an ether cord
to the data center server once assay is ready
for ‘‘go-live’’

DO use consistent hardware, OS, network
configuration, and data workflow from
validation onwards to assay implementation

Revalidation DON’T skip revalidation of the bioinformatic
pipeline even for minor changes

DO revalidate if even 1 line of code is
changed

DO revalidate even if just the order of
algorithms or data flow is changed

Optimization N/A DO lock down the pipeline after it has become
optimized before starting validation

Optimization can use data from real sequenced
or in silico data sets

Types of variants for validation DON’T use too many simple variants for
pipeline validation

DO include horizontally and vertically complex
variants

Poorly covered regions DON’T gloss over poorly covered regions DO disclose which areas do not consistently
meet quality standards

Abbreviation: N/A, not applicable.
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variant detection can be evaluated for a bioinformatics
pipeline.

In addition to GIAB, DNA or cell lines can be purchased
by Corielle and run through the clinical assay. Cell lines can
be fixed with FFPE, with resulting variants compared to that
of native DNA in order to determine technical artifacts
common from fixation (DNA fragmentation resulting in
shorter read lengths).

Engineered reference samples that contain specific clin-
ically relevant mutations (positive controls) can also be
purchased for commercial entities, including Horizon
Discovery and SeraCare. Engineered reference samples
carrying distinct variants can be used to calculate accuracy
in determining mutation allele frequency and lower limit of
allele detection. Cell lines developed from specific diseases
or known to carry specific mutations can also be used as
reference material. The DNA from these cell lines can be
mixed with the NA12878 GIAB sample at several ratios to
determine the limit of detection of the bioinformatics
pipeline. Mixed samples can be compared to pure
NA12878 GIAB to evaluate the accuracy of a somatic
mutation workflow for cancer assays. Commercial entities
provide a list of verified mutations present in these samples.
The allelic frequency is often determined by digital-droplet
PCR but may estimate allele frequency differently than an
NGS platform.

Synthetic samples can be created bioinformatically.
Programs such as BamSurgeon can insert model SNVs
and indels in BAM files at positions and frequencies
specified by the user.84,85 The bioinformatic pipeline is
evaluated for the detection and accuracy of all variant types
that are anticipated to be encountered by the assay. In the
case of cancer bioinformatics pipelines, the original and
modified BAM files can test the accuracy of detecting
somatic mutations.

Validation Step 2: Clinical Samples

Concordance of results with clinical samples that have
been tested by a Clinical Laboratory Improvement Amend-
ments (CLIA)–accredited clinical laboratory are necessary to
validate the entire assay, including the bioinformatics
pipeline. Clinical samples should be the same sample type
and have the same diversity of variation as the intended
tested samples.

For germ-line testing, the typical sample types are blood
or saliva. At minimum 10 to 20 samples containing each of
the different expected variant types (CNVs, SNVs, indels, or
SVs) are necessary to assess accurate variant detection. For
rare diseases, parents and siblings are sequenced in order to
determine disease-causing mutations. Validation of accurate
genotype prediction for proband and relative is necessary to
identify candidate disease causing mutations. For example, if
both parents have no mutation where the proband has a
new variant in a gene with dominant inheritance, the new
variant would be classified as de novo, which increases the
support for the variant being pathogenic according to
American College of Medical Genetics criteria. Thus,
bioinformatic pipelines for germ-line testing must be able
to handle sequencing data from a proband and relatives.

In pan-cancer testing, FFPE, fresh blood, and bone
marrow samples are the common sample types. The FFPE
samples from solid tumors should include a variety of tissue
sites, including breast, lung, skin, bladder, pancreas,
adrenal, and kidney. The blood and bone marrow samples
should include a diversity of diseases, including cases with a

diagnosis of acute and chronic leukemias of myeloid or
lymphoid origin. At minimum 10 to 20 samples for each
sample type with a diversity of expected variant types,
including SNVs, indels, CNVs, and gene fusions, are
necessary to determine pipeline accuracy. Positive controls
for gene fusions can come from samples with a positive
fluorescence in situ hybridization result. Copy number
changes can be confirmed by microarray or cytogenetic test
results.

Validation Step 3: Precision Study

Reproducibility of the assay and bioinformatics pipeline is
evaluated using technical replicates (1) prepared by different
technologists, (2) run on all the different instruments that
will be used for the clinical assay, (3) by run, (4) analyzed on
different available hardware, and (5) analyzed by different
bioinformaticians.

Reproducibility is demonstrated by a precision study
consisting of intrarun and interrun reproducibility. Cases
with a combination of SNV, SV, and indels are run in
triplicate on the same sequencer run and in triplicate during
3 separate sequencing runs, with appropriate bar coding, to
affirm the same results (.98% concordance) are obtained
for all 3 specimens. The precision study should also assess
reproducibility for any variable that might affect consistency
of results. Laboratory scientists and bioinformaticians
performing the assay should be compared to ensure
reproducibility. Other factors, such as individual sequencing
machines and computing hardware, should all be compared
in the precision study to ensure concordant results are
obtained from all instruments and hardware that will be
used in the clinical assay.18,82

A special consideration in the precision of NGS assay
studies is the reduction of recurrent false-positive variants.
Any assay will have recurrent technical artifacts of sequenc-
ing that will appear in multiple runs. These variants can be
filtered out by triplicate sequencing of control genomic DNA
then identifying variants that should not occur and marking
them as technical artifacts that can be bioinformatically
filtered out.

Of note, sample quality is affected by many factors,
including fixation time, contamination by necrotic tissue,
and tumor cell percentage. Accuracy will be reduced in
poor-quality specimens. Therefore, any tuning of the
bioinformatic pipeline to reduce errors in samples of poor
quality must be performed in the optimization stage before
validation begins. This process will also determine the
reportable and nonreportable regions of the assay.

There will always be limitations to any assay, and these
must be disclosed as a part of the validation.86 Sequencing
can be difficult to perform in areas with GC-rich content,
long homopolymer runs, or low complexity. Certain
clinically relevant genes are known to be difficult to
sequence, for example CEPBA and the TERT promoter.82 It
may not be the fault of the bioinformatic pipeline when
sequencing chemistry yields poor coverage of an area, but
proper disclosure of these limits must be described.

Validation Step 4: Standard Operating Procedures and
Documentation

Clinical laboratories have stringent documentation re-
quirements to demonstrate compliance, and this includes
the bioinformatic pipeline. Elements of documentation
include the name of the pipeline, version number,
developer, software and hardware, networks the pipeline
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is connected to, backups (location and frequency), the
system to transmit data, and technical support available for
each component. Documentation for software should not
only include the algorithm and code used but also the
operating system, database where information is held, and
transmission method.82

The pipeline is processing clinical data, and therefore
Health Insurance Portability and Accountability Act (HI-
PAA) regulations apply. Samples should be identified with 4
unique patient identifiers, which is more than the usual 2
patient identifiers used in face-to-face interactions. Exam-
ples of essential identifiers include: (1) sample ID, (2) unique
patient identifier, (3) run number, and (4) laboratory
location. Although a laboratory might be inclined to use a
specimen ID like S19-100, consider that this code is not
unique, and many institutions may use such an identifier.
When choosing the name, certain Health Language 7 (HL7)
incompatible symbols (~j \ ^ & and #) should be avoided
because HL7 is the required medium of transmitting patient
care information.18

Validation Step 5: Updating and Revalidation

If updates to any software or any changes in any
component of the pipeline are performed, the whole process
must be validated again. This should be as straightforward
as rerunning an appropriate number of previous runs
through the upgraded pipeline and ensuring the results
are equivalent. Often, an appropriate number of runs would
be from 3 to 5, ensuring that a variety of mutation types are
included (SNV, indel, SV, etc). As referenced below in Table
4, revalidation must be performed for simple changes, and
this includes changes in even 1 line of code or the order of
algorithms even if the algorithms themselves did not
change. Thus, optimization must be heavily emphasized to
avoid unnecessary revalidations.18

An important part of optimization is to challenge the
system with a breadth of horizontally and vertically complex
variant types, which could be encountered in clinical testing.
Horizontally complex variants are 3 or more SNPs or indels
(up to 21 bp in length) on the same read strand. Vertically
complex variants are defined as 3 or more variants in the
same region but on different read strands. Vertically
complex variants could occur in the case of tumor
heterogeneity (subclonal populations), mosaicism, com-
pound heterozygotes, or sequencing artifacts.18 Challenging
the clinical bioinformatic pipeline with complex clinical
samples or in silico–derived variants will produce a robust
pipeline capable of detecting important variants without
repetitive revalidations.

REPRODUCIBILITY ACROSS CLINICAL LABORATORIES
AND PROFICIENCY TESTING

The CLIA law of 1988 originated out of a need to ensure
laboratory standardization to ensure that a patient could go
to any laboratory in the nation and receive a comparable
result.86 Proficiency testing with common material sent to all
labs is one of the ways to confirm that all labs are reporting
comparable results.

Even though clinical laboratories compare their results to
results from other CLIA-validated laboratories in the
validation process, often the full results cannot be compared
because (1) most commercial laboratories only report the
clinically actionable variants and not all variants observed,
(2) each laboratory might be using different gene panels or

capturing only a subset of the captured genes, and (3) each
laboratory will have differences in their assay limit of
detection, depth of coverage, and tested variant types.
Discrepancies in bioinformatic analysis have been shown in
2 studies that performed interinstitutional FASTQ file
exchanges.88,89 Because of these challenges, the validation
typically only examines differences in the sensitivity of
compared laboratories.

For College of American Pathologists (CAP) accreditation,
CAP-accredited laboratories are expected to perform profi-
ciency testing at least twice yearly to ensure laboratories
provide comparable results. NGS laboratories have profi-
ciency tests (PTs) for the wet lab and dry lab: (1) DNA to test
the entire lab workflow from sequence generation to variant
prediction, and (2) sequencing results to test only the
bioinformatic portion of the assay. Proficiency testing for the
bioinformatic pipeline was deemed necessary because it is
difficult to include a large range of complex variants in
physical specimens.90 The bioinformatic PT presents unique
challenges because of the fact that bioinformatics workflows
are designed for a specific assay and might not have the
same level of accuracy with a different wet lab protocol, and
this includes (1) intended sample types, (2) hybridization-
versus amplicon-based gene panels, and (3) different
sequencing platforms. For instance, if duplicate removal is
part of the bioinformatic pipeline for a hybrid-based assay,
all of the amplicons from a PT sample would be removed.
CAP recognizes this challenge and will soon allow
laboratories to send sequence files (FASTQ), which will be
synthetically altered to include various frequencies of
genetic mutation. Because this is a new type of PT, there
will be implementation challenges as bioinformatics pipe-
lines are tuned to the assay for which they were designed.
Furthermore, complex in silico samples can be made with
ease, which is discordant from the level of complexity tested
in wet bench PT samples that focus on clinically relevant
variants. These wet bench PT samples still involve bio-
informatic analysis to determine results, which calls into
question the necessity of additional bioinformatic proficien-
cy testing.

As the CAP continues to improve upon the bioinformatic
proficiency testing process, the regulations and guidelines
that are monitored during inspection are also evolving for
bioinformatics. The only professional society guidelines
have been published by the Association for Molecular
Pathology and are based mostly on expert opinion, with few
empirical studies examining best practices of clinical NGS
bioinformatics because it is still so new. The guideline and
checklist both emphasize pipeline optimization before
initiating validation, as is similar to regular assay validation.
Furthermore, data storage and transfer must be consistent
processes, with standard operating procedures written for
these steps too. Because storage is becoming a growing cost
for high-depth sequencing, there are different levels of
storage that usually have a tradeoff between accessibility
and cost (eg, Amazon Web Service has a deep freeze option
that is much cheaper, but data access may take a few days).
Lastly, the CAP inspection includes a review of bioinfor-
matic processes, but the depth of the review will vary with
the inspector’s fluency in this area.

SUMMARY

Bioinformatics pipeline development for NGS is a
rigorous process where all of the variables affecting accuracy
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of the clinical assay must be taken into consideration along
with the unique features of the wet-lab protocols. Because
there is no standard protocol used by all clinical laboratories
to generate sequence data from tissue, there is also no
standard bioinformatics protocol to identify clinically
actionable genetic variants. Regardless, there are essential
elements for any bioinformatics pipeline, which include the
reference genome, sequence alignment, variant detection
(SNVs, indels, CNVs, and SVs), quality filtering, and clinical
annotation. The bioinformatics pipeline validation is an
integral part of the clinical assay validation. Validation
examines the sensitivity, specificity, precision/reproducibil-
ity, and limit of detection of the whole clinical test, including
the bioinformatics pipeline. Finally, proficiency testing is
necessary to determine the performance of the test and
ensure consistency across clinical laboratories.
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