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Abstract

Background: Large-sequencing cancer genome projects have shown that tumors have thousands of molecular
alterations and their frequency is highly heterogeneous. In such scenarios, physicians and oncologists routinely face
lists of cancer genomic alterations where only a minority of them are relevant biomarkers to drive clinical decision-
making. For this reason, the medical community agrees on the urgent need of methodologies to establish the
relevance of tumor alterations, assisting in genomic profile interpretation, and, more importantly, to prioritize those
that could be clinically actionable for cancer therapy.

Results: We present PanDrugs, a new computational methodology to guide the selection of personalized treatments
in cancer patients using the variant lists provided by genome-wide sequencing analyses. PanDrugs offers the largest
database of drug-target associations available from well-known targeted therapies to preclinical drugs. Scoring data-
driven gene cancer relevance and drug feasibility PanDrugs interprets genomic alterations and provides a prioritized
evidence-based list of anticancer therapies. Our tool represents the first drug prescription strategy applying a rational
based on pathway context, multi-gene markers impact and information provided by functional experiments. Our
approach has been systematically applied to TCGA patients and successfully validated in a cancer case study with a
xenograft mouse model demonstrating its utility.

Conclusions: PanDrugs is a feasible method to identify potentially druggable molecular alterations and prioritize drugs
to facilitate the interpretation of genomic landscape and clinical decision-making in cancer patients. Our approach
expands the search of druggable genomic alterations from the concept of cancer driver genes to the druggable
pathway context extending anticancer therapeutic options beyond already known cancer genes. The methodology is
public and easily integratable with custom pipelines through its programmatic API or its docker image. The PanDrugs
webtool is freely accessible at http://www.pandrugs.org.
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Background
Identifying the most appropriate therapies from cancer
genome data is a major challenge in personalized cancer
medicine. Standard of care treatments are commonly se-
lected following criteria such as: cancer type; stage; pa-
tient status; and/or the presence of prognostic and
predictive biomarkers. However, cancer treatment could
be revolutionized if the information contained in large
genomic datasets were to be systematically deconvoluted
in terms of potential treatments [1]. Here, the identifica-
tion and evaluation of somatic alterations and their col-
lective impact on tumor progression pose considerable
challenges to their clinical application [2, 3]. More spe-
cifically, physicians and researchers are challenged with
long lists of tumor-specific genomic variants where most
variants are either clinically “unactionable,” their bio-
logical role unknown, or they are irrelevant for tumor
biology [4]. In addition, the current list of cancer driver
genes [5] has clinical limitations since genomic alter-
ations in these genes may be essential for oncogenesis,
tumor cell growth, and survival; but the same genes may
not be targetable by current therapies [6]. Moreover,
very recent studies have revealed that cancer gene lists
are still incomplete and that there are many more cancer
genes yet to be discovered [7–9]. In this scenario, it is
essential to develop new methodologies to analyze gen-
etic alterations in terms of treatment options, helping to
prioritize those that could be useful for the management
of cancer patients.
Several remarkable efforts have addressed the

prioritization of genomic alterations [10–13]. These
methods exploit the extensive literature and knowledge
available in public repositories to catalogue cancer gen-
omic variants and their impact on biological functions,
although none of these methodologies directly link gen-
omic alterations to potential therapies. Tools such
DGIdb [14], OncoKB [15], and the Cancer Genome In-
terpreter (CGI) [16] have been developed to identify
clinically actionable genomic alterations in tumors. Al-
though these tools demonstrate the potential of targeted
therapies and provide drug repurposing strategies, they
present some limitations. They only consider known
cancer driver genes for drug prescription, they are based
exclusively on somatic DNA alterations, the therapeutic op-
tions are restricted to “one target - one drug” ignoring mul-
tiple targetable mutations and the protein pathway-specific
activity, and they do not provide a prioritized list of treat-
ments based on clinical, biological, and pharmacological
evidence.
Here we introduce PanDrugs, a new computational

resource to propose drug therapies from genome-wide
experimental results, including variant and gene lists. Pan-
Drugs expands cancer therapeutic options by taking into
account multiple genomic events potentially responsive to

a treatment, the pathway context [17], and the pharmaco-
logical evidence reported in large-scale experiments [18, 19].

Implementation
PanDrugs database
The PanDrugs database (PanDrugsdb) has been imple-
mented to store gene–drug relationships. PanDrugs
methodology mines PanDrugsdb to provide a catalogue
of prioritized candidate drugs and targetable genes esti-
mated from a list of variants (or genes) provided by a
user (Fig. 1a).
Pharmacological data and drug annotations available in

PanDrugsdb were collected from 24 databases. These in-
cluded 18 sources with information curated by experts
and gene–drug associations obtained from experimental
drug screenings: The Cancer Therapeutics Response Por-
tal [19] and GDSC [20] (Additional file 1: Table S1). Since
different sources employ a variety of non-standardized
identifiers to mention the same compound, drug names
were standardized in order to be consistently integrated
within PanDrugsdb (Additional file 1: Materials and
Methods). Following this, drug annotations were enriched
with additional information regarding drug families, drug
indication status, cancer type, and therapy description
(Additional file 1: Figure S1 and S2). Gene–drug relation-
ships were also annotated with the type of gene–drug rela-
tion (i.e. drug target or biomarker), drug sensitivity or
resistance response, and the type of genomic alteration as-
sociated to the drug response.
The current version of PanDrugsdb includes 9092

drugs, 4804 unique genes, and 43,909 direct and
non-redundant gene–drug interactions. The database is
built in MySQL RDBMS. Full details regarding Pan-
Drugsdb implementations and PanDrugs software are
described in Additional file 1: Materials and Methods.

PanDrugs nomenclature
PanDrugs categorizes druggable genes as: (1) direct tar-
gets; (2) biomarkers; and (3) pathway members.
The term “direct targets” includes those genes that con-

tribute to disease phenotype and can be directly targeted
by a drug (i.e. small molecule or monoclonal antibody).
For instance, BRAF is a direct target for vemurafenib [21].
“Biomarkers” refers to genes that have a genetic status as-
sociated with drug response (according to clinical or
pre-clinical evidence) but the protein product is not the
drug target itself. For example, BRCA-mutated cancers
that respond to poly-ADP-ribose polymerase (PARP) in-
hibitors [22], PTEN loss that is associated with decreased
sensitivity of colorectal cancer tumors to anti-EGFR
antibodies [23], or mutations in TSC1/2 as clinically ap-
proved biomarkers of PI3K/Akt/mTOR inhibitor response
[24, 25]. PanDrugs “biomarkers” information was obtained
from manually curated databases (see Additional file 1:
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Materials and Methods for details) and from experimental
assays in cancer cell lines (GDSC and CTRP).
Targeted therapies may target cell signals that are

needed for cancer cells to develop, proliferate, and in-
vade. Drugs targeting the activity of the surrounding
interactors in the biological pathway of a mutated gene
could: (1) produce the same downstream effect as target-
ing the mutated gene itself; (2) enhance response by syn-
ergistic effects; and (3) be used in combination to avoid
possible compensatory drug resistance mechanisms
[26–29]. Following this paradigm, PanDrugs includes
“pathway member” referring to all those downstream
druggable targets taking advantage of the pathway back-
ground underlying the user’s gene list. Interestingly, this
paradigm unlocks alternative therapeutic ways for untar-
getable genes.

Finally, PanDrugs analyzes the “collective gene impact”
defined as the number of druggable genes (direct targets,
biomarkers, and pathway members) in the input list that
points to a particular drug. Those drugs capable of target-
ing the largest number of druggable genes are prioritized.

PanDrugs uses two scores to prioritize cancer treatments
PanDrugs calculates two scores integrating a variety of
clinical, biological, and pharmacological sources and
databases to suggest tailored anticancer therapies based
on user supplied variant lists and PanDrugsdb (Fig. 1a).
Gene Score (GScore) is in the range of 0–1 based on the
level of evidence supporting gene clinical implication
and its biological relevance in cancer (Additional file 1:
Figure S3A). Drug Score (DScore) estimates drug re-
sponse and treatment suitability (Additional file 1: Figure

Fig. 1 PanDrugs score calculation. a Overview of the DScore and GScore calculation and their corresponding annotation sources. PanDrugs considers
drug indication and status, gene–drug associations and number of hits to calculate the DScore. GScore is estimated according to gene essentiality and
tumoral vulnerability, gene relevance in cancer, the biological impact of mutations, the frequency of gene alterations, and their clinical implications. b
PanDrugs considers the “Best therapeutic candidates” based on the accumulated and weighted scoring of GScore and DScore
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S3B). A larger number of supporting databases, curated
annotation, and clinical impact enhance the weight in
both GScore and DScore calculation. Full descriptions
of GScore and DScore calculations are available in
Additional file 1: Materials and Methods.
GScore has been implemented to consider: (1) gen-

omic feature evidence by mutation consequence, func-
tional impact, and population allele frequency; (2)
relevance in cancer estimated by Cancer Gene Census
(CGC) of COSMIC v84 [30], TumorPortal resource [31],
Tamborero et al. [32], and OncoScape [33]; (3) essential-
ity from RNA interference (RNAi) experiments in cancer
cell lines from Achilles project [34, 35] and; (4) clinical
implications based on its pathogenicity supporting evi-
dence (taken from COSMIC and ClinVar). GScore
weight assignation for non-ranked gene lists and for
VCF files are described in Additional file 1: Tables S2
and S3, respectively.
DScore is calculated using PanDrugsdb to evaluate the

therapeutic implications of those altered genes previ-
ously employed for GScore calculation. DScore takes
into account: (1) drug-cancer type indication (from the
FDA and clinicaltrials.gov); (2) drug clinical status (ap-
proved by the FDA, clinical trials, or preclinical); (3)
gene–drug relationship (i.e. direct target, biomarker, or
pathway member); (4) number of curated databases sup-
porting that relationship (i.e. database factor); and (5)
collective gene impact (Additional file 1: Figure S3C).
DScore has values from − 1 to 1 where negative values
correspond to drug unresponsiveness and positive values
to drug sensitivity (Additional file 1: Figure S3B).
PanDrugs provides a prioritized list of candidate drugs

considering GScore and DScore values. Those drug ther-
apies supported by scores nearest to 1 in both GScore
and DScore will have more evidence for their effective-
ness in cancer treatment and will be considered “Best
therapeutic candidates” by PanDrugs (Fig. 1b).

Exploiting pathway information to increase therapeutic
options
PanDrugs expands the anticancer therapeutic arsenal
suggesting drugs to target genes located downstream to
the altered gene(s). To this end, PanDrugs integrates
previously modelled biological circuit information (e.g.
signaling pathways) [36], the interaction types between
nodes (activation or inhibition), and the gene functional
role (oncogene or tumor suppressor). Ideally, a perfect
gene–drug(s) solution will meet the following criteria:
(1) the gene is affected by activating point mutations
(predicted by functional impact algorithms or confirmed
by databases/literature); (2) the gene is essential in syn-
thetic lethal screenings; (3) the gene is sensitive to spe-
cific drugs included in PanDrugs; and (4) an FDA drug
is approved or under clinical trial that targets the gene.

Although it is known that only few genomic alterations
will follow these stringent criteria, the emerging “drug-
gable genome” concept opens the whole genome to
therapeutic intervention. In other words, both a given
mutated gene and its interactions are putative drug tar-
gets [37, 38]. Following this paradigm, PanDrugs offers a
systems biology framework to propose drugs that arise
as rational therapeutic candidates. For example, MET
amplification plays a role in acquired resistance to EGFR
inhibitors of patients with EGFR-mutated tumors by ac-
tivating MAPK and PI3K/AKT signaling pathways [39,
40]. Combination therapy of EGFR and MET inhibitors
is used to block both MET and EGFR signaling pathways
[41]. In this scenario, PanDrugs proposes the following
as therapeutic options: (1) avoiding EGFR inhibitors
alone due to the known lack of sensitivity; (2) the usage
of MET inhibitors that can overcome resistance of
EGFR-TKIs; and (3) targeting downstream druggable
genes (i.e. RAF, MEK) with available drugs (i.e. Sorafenib,
Trametinib) blocking the oncogenic consequences of the
pathway overstimulation [42, 43] (Fig. 2).

PanDrugs web tool and application programming interface
PanDrugs is available as a user-friendly web tool with pre-
loaded queries and demo examples at http://www.pandrug-
s.org. The detailed user manual is accessible online at
https://www.pandrugs.org/#!/help. The server supports three
alternative types of input: (1) single and multiple queries
(gene lists); (2) standard VCF files; and (3) a ranked list of
genes, where ranking is obtained from experimental obser-
vations (i.e. RNA-sequencing experiments). Regular analysis
of a 500-line VCF file takes an average time of ~ 6 min in
the PanDrugs server. The results page provides a panel with
basic statistics of the query, pie-charts depicting clinical
status distribution and families for the drugs proposed, and
a bubble plot representing GScore and DScore together
with the best candidate therapies suggested by PanDrugs.
Moreover, the tool generates a ranked summary table of
the treatments with raw scores and links to external data-
bases (Additional file 1: Figure S4). In addition to GScore
and DScore, the summary table displays comprehensive
and sortable information about genes, drugs, type of gene–
drug interaction, drug family, drug clinical status, type of
therapy available (only for the approved drugs), and sources
of annotation employed. PanDrugs uses KEGG pathways to
map the relationship between input genes and pathway
members suggested as candidate drug targets. Our tool also
supports drug queries to explore the gene–drug interac-
tions available in PanDrugsdb providing the subsequent
summary table. All results generated by PanDrugs are easily
downloadable in standard formats (i.e. CSV, PNG, PDF,
etc.). PanDrugs provides a REST-based Application Pro-
gramming Interface (API) allowing developers to make
queries directly to PanDrugsdb, to incorporate output from
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PanDrugs within their own algorithms, and to combine the
tool as a novel module in NGS analysis pipelines integrat-
ing genetic data and therapeutic alternatives. PanDrugs is
also available as a docker image at https://github.com/
sing-group/pandrugs-docker.

Results
PanDrugs in The Cancer Genome Atlas (TCGA) data
PanDrugs has been systematically applied to a cohort of
7069 samples from the TCGA project that correspond to
20 different tumor types (Additional file 1: Figure S5).
File sources employed for the TCGA analysis are listed
in Additional file 1: Table S4. Databases used in the
study and their corresponding versions are detailed in
Additional file 1: Table S5. Full results may be inter-
actively accessed at the PanDrugs website (http://
www.pandrugs.org/).
The PanDrugs analysis of TCGA tumors showed that the

GScore distribution of genes affected by genomic alteration
events (SNVs + indels + Copy Number Variations (CNVs))

drops drastically at GScore = 0.4. In agreement with previ-
ous studies, this observation suggests that most genomic al-
terations in TCGA patients have little evidence of being
associated with cancer and, in consequence, are poorly an-
notated in public databases [31, 44] (Additional file 1: Figure
S6A). Genes with a GScore > 0.4 and carrying at least
one mutational and/or CNV event were used to identify
potential therapies and were found present in > 6000 of
the 7069 TCGA samples (Additional file 1: Figure S6B,
S6C; Table S6). We decided to use this threshold for
TCGA analysis to establish a compromise solution be-
tween gene annotation quality and retaining the largest
number of patients. For instance, EGFR mutations across
different TCGA tumor types exhibit a 0.23 < GScore
< 0.82 while mutations in KRAS have GScore values in
the range of 0.36–0.97. These GScores underline the bio-
logical relevance and clinical utility of both KRAS and
EGFR genomic alterations in cancer. Differences in
GScore values reflect the higher frequency of KRAS hot-
spot mutations and their well-known pathogenicity in

Fig. 2 Possible scenarios for PanDrugs therapeutic candidates. PanDrugs proposes three potential types of druggable candidates. This includes:
(1) direct targets, a gene that contributes to a disease phenotype and can be directly targeted by a drug; (2) drug-resistance biomarkers, a gene
which genetic status is associated with a drug response from clinical or pre-clinical evidence but its protein product is not the direct target of the
drug; and (3) pathway members, a targetable gene located downstream to the altered one. To illustrate this, tumors mutated in EGFR carrying
MET amplifications will not respond to EGFR inhibitors (red). PanDrugs proposes as therapeutic strategy MET inhibitors and targeting MET
downstream proteins (green) to drive tumor cell death
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contrast to the EGFR mutational heterogeneity and its
broader functional impact and pathological diversity
(Additional file 1: Figure S7). In particular, EGFRGScore

~ 0.8 reveals those well-known mutations with clinical
significance related to drug response (L858R) while
EGFRGScore ~ 0.4 corresponds to mutations residues that
are not located in the protein kinase domain and that
are less frequently found in cancer patients but that may
have a deleterious functional effect (i.e. EGFR p.L62R).
KRASGScore ~ 0.9 represents well-described and very fre-
quent driver mutations located in exon 2 codons 12 and
13 with clinical significance as diagnostic, prognostic,
and predictive biomarkers.
Using a GScore threshold our observations showed that

an in silico prescription of approved drugs for direct tar-
gets plus biomarkers offered treatments for 65% of pa-
tients when point mutations, indels, and CNVs are
considered simultaneously. (Additional file 1: Figure S8A).
Notably, PanDrugs is able to extend drug prescription for
86% of TCGA patients by exploiting pathway member–
drug associations (Additional file 1: Figure S8B).
The PanDrugs TCGA analysis was also used to evaluate

the potential of non-driver genes as effective targets for
cancer treatment by selecting the most frequently altered
genes in TCGA patients annotated in PanDrugsdb. This
selection was carried out for every TCGA tumor type by
considering the top five genes according to frequency in
small variants (point mutations and indels) and CNVs sep-
arately. Following these criteria, we obtained 200 alter-
ations located in 100 genes (Additional file 1: Table S7).
Interestingly, 54% of these most frequently altered genes
were found druggable but are currently labelled as
non-driver genes [45, 32]. Our results strongly suggest
that the extension of genomic events detection beyond
the known cancer driver genes can help in finding add-
itional effective therapies for cancer treatment.
We compared PanDrugs’ performance by applying our

methodology to the TCGA cohort previously used in
other studies [46, 47] This comparative TCGA analysis
showed that the PanDrugs pathway member approach
expands therapeutic options for FDA-approved drugs to
an average percentage of 93.41% in TCGA patients
(Additional file 1: Figure S9). This result shows that the
PanDrugs pathway member strategy might be useful to
complement current in silico prescription tools.

Comparison with other tools
We compared PanDrugs’ performance to DGIdb,
OncoKB, CGI, CancerResource (CR) [48], Personalized
Cancer Therapy (PCT, https://pct.mdanderson.org/),
JAX-Clinical Knowledgebase [49], and Precision Medi-
cine Knowledgebase (https://pmkb.weill.cornell.edu/).
The tools included in the comparison and the descrip-
tion of their main functionalities are shown in Fig. 3a.

Gene–drug associations per database are compared in
Fig. 3b. PanDrugs supports single and multiple queries
(i.e. gene lists) as well as standard VCF files, while
DGIdb, CR, and PCT do not support variants and
OncoKB, PCT, and CR do not accept multiple gene
queries. To make tool comparisons viable, we selected as
input only those altered genes annotated in cBioPortal.
The comparison was carried out by selecting an

EGFR-mutant lung adenocarcinoma patient with known
drug-resistance mechanisms to EGFR inhibitors via
MET amplifications from the TCGA cohort (NSCLC,
TCGA-38-4629). Our results show that only PanDrugs
and CGI alert of the risk of a possible resistance mech-
anism to EGFR inhibitors. By contrast, the other tools
offer EGFR inhibitors as main therapeutic options since
they do not support co-occurring alterations among
their functionalities.
Remarkably, only PanDrugs suggests clinically ap-

proved treatments and drugs in clinical trials for genes
not considered by the other tools using biomarkers and
pathway members. For instance, PanDrugs prescribes
Palbociclib (Additional file 1: Figure S10A), a selective
inhibitor of the cyclin-dependent kinases CDK4 and
CDK6, to treat this NSCLC patient as a result of the fol-
lowing evidence: (1) CDK6 is a direct target; (2) CCND1,
CDKN2A, and CDKN2B are biomarkers; and (iii) CDK4
is a downstream pathway member gene. Another clear
example is Navitoclax, a BCL2 family inhibitor currently
tested in clinical trials for NSCLC (NCT02520778). Pan-
Drugs suggests Navitoclax since CDK6 is a biomarker of
Navitoclax response and BCL2 as pathway member be-
cause it is downstream to the TP53 and ERBB2 genes
which are altered in this particular NSCLC patient.
Interestingly, PanDrugs is also capable of expanding

drug prescription beyond known cancer genes. To illus-
trate this, we use the list of novel candidate cancer genes
provided by Martincorena et al. PanDrugs analysis re-
vealed 436 gene–drug associations not reported by the
other tools (i.e. MAP2K7-Lenalidomide, BMPR2-Serdeme-
tan, or ZFP36L2-Embelin) (Additional file 1: Figure S10B).
As expected, all these associations have low GScores due
to the limited clinical and biological gene annotations;
however, 32 associations corresponding to 13 non-driver
genes showed DScore > 0.7, suggesting their viability as
potential targets for cancer treatment.
PanDrugs has been integrated within an online resource

for PanCancer Analysis of Whole Genomes (PCAWG)
covering 2658 donors from 48 cancer types [50]. Among
these donors, we chose three patients without druggable
cancer driver-altered genes from colorectal, breast, and
prostate cancer to evaluate PanDrugs therapeutic proposals.
The colorectal cancer patient (DO10486) showed 32 pre-
dicted damaged genes. None of the six altered drivers
(STAT3, SOX9, ARID1A, TGFBR2, RTN4, PPP2R1A) are

Piñeiro-Yáñez et al. Genome Medicine  (2018) 10:41 Page 6 of 11

https://pct.mdanderson.org
https://pmkb.weill.cornell.edu/


currently targeted with approved drugs although STAT3 in-
hibitors are under clinical trial. PanDrugs was queried with
the 32 damaged genes and proposed, among others, Dabra-
fenib (LIMK1 as the direct target) and Paclitaxel (CDK5R1
as the pathway member).
In the TP53-deficient breast cancer patient (DO5375)

with 15 damaged genes detected (none of them known
drivers), Vismodegib, an inhibitor of the Hedgehog sig-
naling pathway, is proposed by PanDrugs as best thera-
peutic candidate driven by LRP2, a damaged gene that
belongs to this pathway. Paclitaxel and Doxorubicin are
also proposed by PanDrugs as the best therapeutic can-
didates. Interestingly, the combination of Vismodegib
plus Paclitaxel and Epirubicin (an analog of Doxorubi-
cin) is currently under clinical trial as neoadjuvant
chemotherapy in triple negative breast cancer patients
[https://clinicaltrials.gov/ct2/show/NCT02694224]. Eight
non-driver damaged genes were found in the prostate
cancer case (DO46813). Currently these genes have no
drugs available to directly target them. Here, PanDrugs as-
signs the best DScores to approved MEK inhibitors and
Vinblastine, an antitumoral alkaloid, to target pathway
members downstream to the damaged TRAF2 gene.
These examples highlight PanDrugs’ capability for propos-
ing drugs used in clinical practice in those cases with no
known driver mutations and limited molecular evidence.

PanDrugs application in a cancer case study
Unfortunately, detailed clinical annotations for patients
in cancer genomics international consortiums are not
publicly available to validate PanDrugs results. To over-
come this limitation, we have experimentally validated
PanDrugs results using a patient-derived cancer mouse
xenograft (PDX) model on which several therapeutic
strategies have been tested as part of a personalized
medicine protocol. The protocol includes whole exome
sequencing analysis and the development of PDX models
as described elsewhere [51].
For this validation, our case study was a 58-year-old

man diagnosed with advanced squamous cell lung carcin-
oma (SCLC; stage IV with brain metastasis). After surgery
(R0), he received a first-line chemotherapy with carbopla-
tin/Paclitaxel. Pemetrexed/Erlotinib was administered as a
second-line therapy to treat the progression of the disease.
Tumor and normal samples of this patient were se-

quenced to identify tumor-specific sequence alterations.
We found 965 somatic mutations and 501 somatic copy
number alterations (389 gain regions and 112 loss regions)
(Additional file 1: Figure S11A). We detected 318 genes
that would have proteins classified as damaged by mutation
consequences such as stop gains, frameshifts, and deleteri-
ous missense variants. Additional file 1: Table S8 summa-
rizes the 46 gene mutations predicted as deleterious.

Fig. 3 a Comparison of current in silico drug prescription tools based on genomic data. b Venn diagram for drug–gene associations available in
DGIdb v3.0.2, Cancer Genome Interpreter, OncoKB, and PanDrugs. Global data for associations from CancerResource and Personalized Cancer
Therapy is not accessible. Total numbers for non-redundant drug–gene interactions after drug standardization using PubChem to compare the
resources are 29,197 (DGidb), 349 (CGI), 129 (OncoKB), and 43,909 (PanDrugs)
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The patient’s variant list (e.g. the complete VCF file)
was evaluated by PanDrugs to identify druggable gen-
omic alterations. MAPK pathway inhibitors were sug-
gested as the best candidates. (Additional file 1: Figure
S11B). Indeed, likely underlying this suggestion, examin-
ation of the genomic events in this patient revealed dele-
terious somatic mutations in HRAS (G13 V), NF1
(K297*), and RAF1 (M562I) proteins. These mutations
are predicted as damaging and may produce an activa-
tion of MAPK/ERK pathway. Constitutive activation of
this pathway has been associated with cancers of the
lung, colon, melanoma, lung, thyroid, leukemia, and
pancreas [52] what makes it a suitable target to treat
these tumours. MAPK inhibitors include compounds
targeting MAP2K1 (MEK). Also, MAPK activity can still
occur as a result of PI3K activation through RAS. Dual
activation of these two pathways is observed in a num-
ber of cancer types including melanoma, prostate, and
colorectal cancer, and provides the rationale for combin-
ing therapeutic agents [53].
We then performed an in vivo evaluation of the effi-

cacy of several targeted antitumor agents—PI3K inhibi-
tor (PI3Ki), MEK inhibitor (MEKi), rapamycin, dasatinib,
and lapatinib—in a low passage PDX mouse model for
this SCLC patient. Statistically significant (p < 0.05)
tumor growth inhibition was reported for MEKi and
PI3Ki treatments compared with the control group at
the time point considered. Overall, benefit was reported
with the combination of MEKi and PI3Ki towards the
avatar model tested (Additional file 1: Figure S11C).

Discussion
Precision oncology requires novel resources and tools to
translate cancer genomic landscapes to clinical utility in
order to prescribe rational, efficient, and tailored treatments
to individual cancer patients [54]. The PanDrugs method
has been implemented to address the interpretation gap be-
tween raw genomic data and clinical usefulness. To this
end, our methodology relies on PanDrugsdb, the largest
catalogue of drug-target associations currently available.
This database is publicly accessible and relates druggable
genes to already approved treatments, well-known targeted
therapies, and preclinical drugs.
Starting from user-supplied gene or variant lists, Pan-

Drugs identifies and prioritizes both direct or indirect
targetable genomic alterations in tumors using a novel
approach based on two scores: GScore and DScore. The
GScore calculates target suitability for each variant (or
gene) by considering its essentiality using RNAi experimen-
tal data from the Achilles project, gene relevance in cancer,
tumor frequency, and the biological and clinical impacts.
The DScore evaluates drug applicability by considering
its clinical indications, drug status, collective gene im-
pact, and druggability (e.g. direct target, biomarker, or

pathway member) for the genes under assessment. In
addition, the DScore calculation integrates in vitro
drug-screening data from GDSC and CTRP. GScore
and DScore are finally evaluated together to create a
gene–drug ranking offering personalized candidate
treatments for the variant input list. This approach esti-
mates the treatment adequacy based on the gene–drug
associations covering more biomedical sources than
any other current in silico prescription tool.
Unfortunately, current anticancer therapies are based

on single biomarkers that do not consider the mutational
landscape of the tumor and intratumoral clonal hetero-
geneity [55]. Additionally, cancer genomics studies have
clearly revealed that tumoral survival and progression are
mainly activated by accumulation of genetic alterations in
crucial molecular pathways rather than driven by single
gene alterations [56, 57]. Thus, an accurate assessment of
tumor fingerprints is essential for the development of ef-
fective therapies taking into account the collective gene
impact and pathway context of genomic alterations from
cancer patients [58, 59]. Our methodology evaluates the
collective gene impact by assigning a higher DScore to
that drug capable to target the highest number of genes
found in the input list. PanDrugs also provides prioritized
treatments beyond single direct targets and biomarkers
found in variant lists by exploiting the context of pathway
members. Following the druggable genome paradigm Pan-
Drugs offers a systems biology knowledge-based layer that
automatically inspects biological circuits. Interestingly,
this expands cancer candidate therapies from beyond lim-
ited cancer-related gene lists to the whole druggable path-
way. To our knowledge, there is no other current tool
with similar characteristics.
PanDrugs-assisted therapeutic strategies have been

systematically applied to large patient cohorts using
TCGA patients. The feasibility of our candidate treat-
ment proposals has been also tested in PDX experimen-
tal models. In these analyses, we found that the pathway
member paradigm is able to expand in silico drug pre-
scriptions for already approved drugs. This might have a
direct impact on improving clinical decision-making by
extending treatment opportunities to those patients
without a clear approved pharmacogenomics biomarker.
The TCGA analysis was carried out establishing a

compromise GScore threshold to retrieve highly reliable
candidate treatments for well-known genes. This strat-
egy avoids handling huge lists of results by preserving
best candidates, but also discards drug–gene associations
found in poorly annotated genes. However, Martincor-
ena et al. have recently reported that half of the coding
driver mutations occur outside of known cancer driver
genes [7]. If this is true, precision oncology will demand
the implementation of novel methodologies capable of
prescribing therapies beyond known cancer genes.
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PanDrugs offers novel therapeutic strategies for such
genes; lowering the GScore threshold while keeping the
default DScore cut-off is enough to uncover reliable
therapeutic options that can target poorly annotated
genes. This would allow the discovery of novel clinically
significant and actionable mutations that could become
new genetic predictive and prognostic biomarkers.
It is important to remark that PanDrugs is more than

an organized catalogue of known gene–drug relation-
ships. PanDrugs is the first method to systematically
infer novel targeted treatments following a rational
framework supported by multi-gene markers, molecular
pathway context, and pharmacological evidence. Our re-
sults show that in silico prescription approaches focused
uniquely on known cancer genes should be complemen-
ted by incorporating drug information associated to gen-
omic alterations located in non-cancer genes. Our
approach extends the treatment opportunities of cancer
patients by enriching the therapeutic arsenal against tu-
mors and opens new avenues for personalized medicine.
Although PanDrugs offers a valuable methodology for

in silico prescription, further efforts are required to im-
prove cancer treatment by proposing more effective
drugs and anticipating drug resistance. Since drug effi-
cacy substantially depends on tissue-, cell-, and
molecular-specific context [60], precision oncology tools
should integrate data beyond pure genomics [61] includ-
ing the combination of high-throughput drug screenings
and functional experiments to unravel heterogeneous
multi-omic dependencies influencing response to ther-
apy [62, 63]. In addition, the integration of additional
biological relationship layers such as protein interaction
networks [64], transcriptional regulatory modules [65],
or pathway activity footprints [66] should improve drug
prioritization and will help to propose alternative thera-
peutic strategies. It is also crucial to have a comprehen-
sive and well-structured drug ontology available that
provides drug annotations (i.e. drug indication, mecha-
nisms of action, chemical structure, side effects,
drug-target associations, and drug families) for a more
accurate drug prescription [67].
Finally, it should be emphasized that current in silico

drug prescription tools are limited by the lack of large
longitudinal precision medicine studies with accessible
clinical records. Such studies are crucial to assess and
validate drug proposals and refine in silico prescription
algorithms to consider additional factors such as mode
of drug administration, combinatorial therapies, drug re-
positioning, and side effects.

Conclusions
PanDrugs provides a feasible method to guide
genomic-hypothesis therapies as well as to prioritize
multiple druggable alterations in genomically complex

tumors. Indeed, PanDrugs represents the first drug pre-
scription tool that proposes cancer therapies with a ra-
tionale based on pathway context, collective gene
impact, and information provided by functional experi-
ments. PanDrugs has demonstrated its adaptability by
being systematically applied to large cohorts of patients
and by providing candidate treatments directed to drug-
gable genes beyond cancer driver genes. Overall, our
method highlights new areas of opportunity for advan-
cing precision cancer medicine, providing a novel and
fully accessible method that could be useful in decreas-
ing the complexity of the interpretation of genomic data
and clinical decision-making. PanDrugs is freely available
at http://www.pandrugs.org.
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