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Prostate cancer remains the most prevalent male malignancy 
worldwide. In 2018, nearly 1.2 million new cases were pro-
jected to be diagnosed1, accounting for 13.5% of all newly diag-

nosed cancers in men. Prostate cancer has a highly heterogeneous 
clinical course. Patients with indolent disease can live for years 
without progression, while aggressive disease can quickly metasta-
size and become incurable. Although the incidence of prostate can-
cer, as a whole, has decreased in recent years, a steady increase in 
advanced or metastatic prostate cancer has been observed concur-
rently2, advocating for improvement in treatment strategies. Thus, 
there is an urgent need to further our understanding of prostate 
cancer heterogeneity.

Cancer subtyping provides valuable insights into cancer 
biology and informs treatment planning. Genomic and tran-
scriptomic studies have revealed subtypes of prostate cancer char-
acterized by mutations and aberrant transcription3–6. Recently, 
the PAM50 classifier was used to subtype prostate cancer into 
prognostic groups with predictive power for treatment sensitiv-
ity6. However, previous studies were based on bulk sequencing, 
which probably omits rare populations that may drive disease 
development and progression. Moreover, bulk data represent the 
collective reflection of signals from both the tumour and the micro-
environment (TME), the latter of which can be a strong driver of  
tumour aggression.

Single-cell analysis reveals transcriptomic 
remodellings in distinct cell types that contribute 
to human prostate cancer progression
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Prostate cancer shows remarkable clinical heterogeneity, which manifests in spatial and clonal genomic diversity. By contrast, 
the transcriptomic heterogeneity of prostate tumours is poorly understood. Here we have profiled the transcriptomes of 36,424 
single cells from 13 prostate tumours and identified the epithelial cells underlying disease aggressiveness. The tumour micro-
environment (TME) showed activation of multiple progression-associated transcriptomic programs. Notably, we observed 
promiscuous KLK3 expression and validated the ability of cancer cells in altering T-cell transcriptomes. Profiling of a primary 
tumour and two matched lymph nodes provided evidence that KLK3 ectopic expression is associated with micrometastases. 
Close cell–cell communication exists among cells. We identified an endothelial subset harbouring active communication (acti-
vated endothelial cells, aECs) with tumour cells. Together with sequencing of an additional 11 samples, we showed that aECs 
are enriched in castration-resistant prostate cancer and promote cancer cell invasion. Finally, we created a user-friendly web 
interface for users to explore the sequenced data.
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Single-cell RNA-sequencing (scRNA-seq) technology has created 
unprecedented opportunities to simultaneously assess thousands of 
cells within a sample, enabling heterogeneity among tumour cells 
and the complexity of the TME to be revealed7–9. Furthermore, 
scRNA-seq provides unique opportunities to assess the regulation, 
evolution and interaction of individual cells9–13. Unravelling cellu-
lar communication and evolution is key to understanding the roles 
of different tumour and TME components14, as well as establishing 
their collaboration network.

Athough scRNA-seq is increasingly being adopted, its applica-
tion to prostate cancer has been limited to circulating tumour cells 
and immortalized cell lines. This limited representation of human 
tumours and lack of TME profiling leaves the intra-tumoral tran-
scriptomic heterogeneity of the most common cancer in men 
largely unknown. In this Article, we have performed scRNA-seq on 
13 prostate tumours and obtained transcriptomic profiles for 36,424 
cells. We have collected and analysed an additional 14 samples con-
sisting of normal prostate tissue, NCCN (National Comprehensive 
Cancer Network) low/high-risk and castration-resistant prostate 
cancers (CRPCs). In total 111,914 single cells from 27 tissue samples 
were analysed. We have provided a comprehensive single-cell gene 
expression atlas for the human prostate and uncovered a highly het-
erogeneous prostate cancer-specific transcriptome landscape har-
bouring multiple malignant programs.

Results
Single-cell transcriptome landscape in prostate cancer. To under-
stand prostate cancer heterogeneity at single-cell resolution, we col-
lected 13 (12 primary and 1 lymph node metastasis) tissue samples 
from 12 patients (Supplementary Table 1, data batch 1) and per-
formed single-cell RNA sequencing (scRNA-seq). After standard data 
processing and quality control procedures (Methods), we obtained 
transcriptomic profiles for 36,424 cells (Extended Data Fig. 1a).

We identified 16 subclusters (Extended Data Fig. 1b) from 
the scRNA-seq profiles using a graph-based clustering method 
(Methods). The QuSAGE15 method was used to quantitatively assign 
the broad lineage of epithelial and stromal cells16 (Extended Data Fig. 
1c) for each cluster. Inference of copy number aberrations (CNAs) 
was performed as previously described9 (Methods). The inferred 
CNAs identified canonical prostate cancer genome alterations4,17, 
including gains of chromosome 8q and losses of chromosome 8p, 
13 and 16q (Extended Data Fig. 1d). We observed an inflection 
point that separates putative malignant and non-malignant cells in 
a few samples (Extended Data Fig. 1e). However, the distinction was 
less precise in other samples, resulting in many cells being classi-
fied as unresolved. There are probably a number of reasons for this. 
First, some localized prostate tumours are well described to have a 
quiet genome. Indeed, in The Cancer Genome Atlas (TCGA) study, 
a subset of prostate cancers harboured zero CNAs4. Our data also 
show a significantly smaller proportion of the genome altered with 
strong CNA relative to melanoma (Extended Data Fig. 1f), making 
the signal weaker and more susceptible to dilution and subthresh-
old CNA scores. Second, prostate cancer is highly heterogeneous, 
and previous DNA sequencing studies have revealed a wide range 
of CNA profiles (0–50% of the genome altered through CNA). As 
a matter of fact, CNA burden is prognostic for prostate cancer18. 
Third, most prostate tumours harbour multiple clones with highly 
divergent CNA burdens, and the subclonal CNA load is far more 
than clonal in most localized tumours19. Despite these caveats, we 
identified a linear CNA cutoff from samples having clear separation, 
and applied it to our full cohort. This allowed us to broadly distin-
guish malignant from non-malignant clusters. Generally, the TME 
cell clusters exclusively contain cells classified as non-malignant 
(Extended Data Fig. 1g), while luminal clusters (Fig. 1a) contain a 
mixture of cells, mostly classified as malignant along with a subset 
of cells with unresolved classification, probably reflecting subclonal 

diversity. The basal/intermediate cell clusters mainly contain cells 
classified as non-malignant and unresolved.

We curated 20 cell type signatures to generate a detailed cell 
identity annotation (Fig. 1a,b). Interestingly, besides canonical kera-
tin genes, we observed expression of T-cell co-stimulatory genes in 
luminal cells (Fig. 1b and Extended Data Fig. 2a), hinting at a poten-
tial role of epithelial cells involved in antigen presentation. The TME 
components (non-epithelial) show a generally lower expression 
complexity compared to epithelial cells (Fig. 1c), consistent with a 
previous study10. Although the inferred CNA deviation for luminal 
cells is significantly higher (Mann–Whitney U test, P < 2.2 × 10−16, 
common language effect size (CLES) = 0.97) than the rest (Fig. 1d), 
values for individual cells span a wide range (0–0.47). Nevertheless, 
it is important to note that non-malignant epithelial cells may also 
contribute to the CNA profiles of luminal cells.

The cell type composition of individual tumours differs substan-
tially (Fig. 1e). As expected, luminal is the dominant epithelial type 
for most tumours (Fig. 1e and Extended Data Fig. 2b). However, 
basal/intermediate is the major epithelial type for sample 154 (basal/
intermediate:luminal = 7; Fig. 1e). Previous work using the PAM50 
signature classified prostate cancer into luminal A, luminal B and 
basal subtypes and was able to inform disease outcome6. However, 
the PAM50 signature was created for breast cancer and might not 
be fully representative of prostate cancer. In addition, a high sig-
nal for the PAM50 basal signature is observed for non-epithelial 
components in our data (Extended Data Fig. 2c), suggesting con-
tamination of the stromal signal in the signature10. Similarly, a high 
Gleason score (GS)-related gene signature derived from a previous 
microdissection analysis20 was highest in stroma, with 3 of 19 genes 
preferentially expressed in TME cells (Extended Data Fig. 2d,e). 
Considering the perhaps dominant contribution of the stroma com-
ponent to certain bulk sequencing-derived signatures21, it is impor-
tant to assess different cell types independently. Therefore, we next 
sought to dissect the epithelial subpopulations underlying tumour 
aggressiveness and to create a purified signature for prostate cancer.

Intrinsic epithelial cell subpopulations underlying tumour 
subtypes. Epithelial cells, including both basal/intermediate and 
luminal types, were re-analysed, yielding 16 clusters (Fig. 2a). 
Most clusters consisted of cells from multiple patients, indicating 
an unbiased cell subpopulation representation (Extended Data 
Fig. 3a). To identify the cell subpopulations associated with differ-
ential clinical outcomes, we compared the expression of multiple 
prostate-cancer-subtype-related signatures across clusters. The 
PAM50 luminal A and B signatures show a high signal for most of 
the clusters simultaneously, except clusters 10 and 12 (Extended 
Data Fig. 3b). Cluster 10 has a high signal for luminal A, while 
cluster 12 is enriched for the luminal B signature, suggesting the 
two signatures are specifically determined by these two clusters of 
cells, respectively. Cluster 12 also has the highest scores of hypoxia 
signalling22 and PCS1, a metastasis associated luminal subtype 
derived from the prostate cancer transcriptome5. Considering that 
all four signatures have important clinical associations, clusters 10 
and 12 are potentially critical cell subpopulations associated with 
prostate cancer progression. We therefore next derived signatures 
representative of these subpopulations (Methods and Extended 
Data Fig. 3c). Cluster 10 alone has high expression of basal/inter-
mediate specific marker genes (KRT5, KRT14, KRT19 and TP63; 
Fig. 2b), and was named ‘Basal/Intermediate cells’. Interestingly, 
marker genes of cluster 12, including the known cell-cycle-related 
genes CDC20, CCNB1, CENPF and PTTG1, are enriched with terms 
related to cell division (Extended Data Fig. 3d), indicating differ-
ences in cell-cycle regulation. We thus used the cyclone function23 
(Methods) to assign cells into their cell-cycle phases. Cluster 12 
showed significant enrichment (Fisher’s exact test, P = 6.7 × 10−41, 
odds ratio (OR) = 5.7) for cells in G2/M (Extended Data Fig. 3d), 
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representing a population driven by cell-cycle-related features, and 
was thus termed ‘CellCycle’. Compared with the other luminal cells, 
CellCycle and Basal/Intermediate cells show distinctive cell func-
tions (Fig. 2c). The CellCycle population is enriched for functions 
such as oxidative phosphorylation and DNA replication, while 
depleted for general luminal cell functions. The Basal/Intermediate 

cells are particularly associated with antigen processing and presen-
tation (Fig. 2c).

Consistent with a previous study24, CellCycle is predictive of dis-
ease outcome across multiple cohorts (Fig. 2d and Extended Data 
Fig. 3e). This is concordant with the observation that CellCycle cells 
show high expression of luminal B, hypoxia and PCS1 signatures5,6,22 
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(Extended Data Fig. 3b), as all these three signatures are associated 
with unfavourable outcomes. Convergence of all three high-risk sig-
natures in the CellCycle population suggests common subpopula-
tions underlying different high-risk subtypes identified from bulk 
data. Nevertheless, it is yet to be determined whether cell-cycling 
status is the main driving force of this population.

In line with luminal A being indicative of longer recurrence-free 
survival6, a high basal/intermediate signature is associated with 
better survival (Fig. 2e and Extended Data Fig. 4a). As basal/inter-
mediate cells show high expression of antigen processing and pre-
sentation genes (Fig. 2c), we investigated immune regulation-related 
genes. Both HLA class II and the chemokine gene CCL2 are specifi-
cally expressed in basal/intermediate cells (Fig. 2b). Notably, basal/
intermediate cells are the main cell population expressing CCL2 
(Fig. 2f,g), and in the two samples with the least basal/intermedi-
ate cell content, CCL2 expression is not detected. Expression of 
CCL2 is also significantly associated with content of basal/interme-
diate cells in bulk sequencing data (Fig. 2h). Such a high correla-
tion persists after removing the effect of infiltrated stromal cells on 
CCL225 (Extended Data Fig. 4b). Considering CCL2 is a well-known 
chemokine that attracts immune cells including macrophage and 
T cells, the relationship between content of basal/intermediate cells 
and infiltration of macrophage and T  cells was investigated. As 
expected, strong correlations were observed across multiple cohorts 
(Fig. 2i and Extended Data Fig. 4c). Together, these results suggest 
that basal/intermediate cells attract immune cells, which might par-
tially contribute to the good prognosis of patients with high basal/
intermediate score.

Tumour-associated macrophages show osteoclast-like features. 
Immune cells in the TME have complicated roles in tumour pro-
gression. We thus used our single-cell data to investigate the het-
erogeneity of infiltrating immune cells. Two distinct myeloid 
populations—monocytic and mast cells (Fig. 1a)—were identified. 
To further characterize the monocytic clusters (Fig. 3a), we com-
pared their averaged abundance with bulk profiles on sorted cells26 
and inspected the expression of canonical marker genes. Cluster 1 
showed the highest correlation with myeloid dendritic cells, while 
all the others were most highly associated with monocytes (Fig. 3b). 
All clusters showed high levels of HLA-DRA and CD68, and all the 
monocytes, but not dendritic cells, showed high levels of CD14 and 
FCGR3A (Fig. 3c). Additionally, clusters 0, 2, 4, 5 and 6 are high in 
C1q protein family genes and MSR1 (CD204), showing characteris-
tics of macrophages. Together, we assigned the cells into three sub-
types: monocyte cells, dendritic cells (DCs) and tumour-associated 
macrophages (TAMs) (Fig. 3a).

Two major types of macrophage activation, the classic (M1) and 
alternative (M2) types, have been described, with M2 primarily 
thought to have a pro-cancer role. We observed a mixture of M1 
and M2 signal activation among TAMs (Fig. 3c), with a strong posi-
tive correlation between the two signals (Fig. 3d), in line with recent 
studies in human cancers showing that TAMs co-express M1 and 
M2 signals7,27. Nevertheless, notable heterogeneity exists among 
TAM clusters, and important pathways involved in macrophage 
function and activation, including tumour necrosis factor (TNF), 
nuclear factor (NF)-κB, nucleotide oligomerization domain- and 
Toll-like receptor signalling, are regulated differently (Fig. 3e).

Cluster 6 (C6) showed higher activation of osteoclast (OC)-related 
pathways such as mineral absorption and lysosome. This is intrigu-
ing, as bone is one of the most common metastatic sites for prostate 
cancer and OCs contribute to the process28. Monocyte/macrophage 
lineage differentiation into OCs is associated with active ligand–
receptor interactions, so we performed cell communication analysis 
using CellPhoneDB14 (Methods). We focused on interactions unique 
to C6 (Extended Data Fig. 5a) and find they are mostly related to OC 
regulation. Among the unique pairs, CDH1-encoded E-cadherin has 

been reported to be an important modulator of osteoclastogenesis29. 
Activins (INHBA/INHBB) and their receptors (ACVR1B/ACVR2a) 
are involved in modulating OC regulation, including enhancing 
RANKL-mediated differentiation, which is a major route inducing 
macrophage into OCs30,31. OC inhibition has been shown to delay 
prostate cancer bone metastasis28. Indeed, C6 TAM is detectable 
across all samples (Extended Data Fig. 5b), indicating early onset of 
TME remodelling that contributes to tumour spread.

Infiltrated CD8+ effector T cells express tumour marker genes. 
T cells can be subtyped into CD4+ T conventional (Tconv), CD4+ T 
regulatory (Treg), CD8+ T naive and CD8+ T effector cells accord-
ing to marker gene expression (Fig. 3f,g). Decreased lipid and 
amino-acid metabolism with increased glycolysis level was observed 
in Treg cells, consistent with previous studies of FOXP3-positive 
thymus-derived Treg cells32 (Extended Data Fig. 5c,d). Interestingly, 
the three clusters (2, 3 and 5) consisting of CD8+ T effector cells 
show substantial heterogeneity (Extended Data Fig. 5c). Cluster 5 is 
the least activated subtype, with the lowest levels of most metabo-
lism and immune pathways, while cluster 3 shows the characteris-
tics of highly activated T cells (Fig. 3h and Extended Data Fig. 5c). 
Strikingly, we see a high level of KLK3, the gene encoding prostate 
specific antigen (PSA), in clusters 3 and 5 as well as Treg cells. To 
understand the underlying mechanism for this unexpected KLK3 
expression, we performed gene co-expression (Methods) analysis to 
identify highly correlated gene modules and focused on ones that 
show subtype- or cluster-specific activation.

Analysis of subtype-specific modules showed significant enrich-
ment of terms associated with their respective functions (Fig. 3h 
and Supplementary Table 2). Interestingly, more than half of the 
subtype-specific modules are unique to Tregs, indicating a distinct 
transcriptomic program for Tregs compared to other T-cell sub-
types. The top enriched terms for Treg-specific modules include 
lineage regulatory processes such as lymphoid progenitor differen-
tiation, regulation of regulatory T-cell differentiation and metabo-
lism of various carbohydrate and amino-acid substrates33. Terms 
related to pathways previously reported to be involved in Foxp3 and 
Treg regulation, such as Wnt-protein34 and RAGE receptor35 bind-
ing, are also among the top enrichments. Cell adhesion mediated by 
integrin is also enriched for Tregs. As integrin expression on T cells 
can affect immune infiltration36, such enrichment thus points to a 
possible mechanism for Treg homing into the tumour region.

Module 61 is the only one specific to KLK3-high T-cell clusters, 
with gradient activation corresponding to KLK3 abundance (Fig. 3h). 
Notably, the statistically enriched terms in this module are related to 
extracellular vesicle (EV) and exosome (Fig. 3h and Supplementary 
Table 2). Moreover, other androgen receptor (AR) signature genes 
are mostly not expressed (Extended Data Fig. 5e), indicating KLK3 
abundance might be of exogenous origin, rather than from acti-
vation of AR signalling in T  cells. We thus hypothesized that the 
accumulation of tumour-specific gene expression in CD8+ T cells is 
mediated by tumour-derived EVs. We detected KLK3 expression in 
all T-cell subgroups, hinting that the effect of EVs might accompany 
different stages of tumour-infiltrating T cells (Fig. 3h).

We next asked if the accumulation of epithelial tumour mark-
ers in T  cells is restricted to prostate cancer. We analysed public 
scRNA-seq data for four additional cancer types (Methods): head 
and neck squamous cell carcinoma (HNSCC), non-small cell lung 
cancer (NSCLC), colon rectal cancer (CRC) and hepatocellular car-
cinoma (HCC). Expression of tumour marker genes in T cells was 
identified in all four cancer types (Fig. 4a), suggesting that this may 
be a general feature of the transcriptome of infiltrating T cells.

EVs originating in prostate cancer cells induce KLK3 expression 
in T cells. We next sought to validate the presence and source of 
tumour marker genes in infiltrated T  cells from patient samples.  
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The KLK3-positive T-cell-specific module 61 contains other 
prostate-cancer-specific genes, including FOLH1, which encodes 
the prostate specific membrane antigen (PSMA; Extended Data 
Fig. 5f). We used flow cytometry to isolate PSMA-positive T cells 
from tumour tissues (Extended Data Fig. 6a,b). Real-time quantita-
tive polymerase chain reaction with reverse transcription (rtPCR) 
analysis showed a very high level of KLK3 in the PSMA-positive but 

not -negative T  cells (Fig. 4b), validating the presence of tumour 
marker genes in T cells.

To test the capacity of tumour cells to alter T-cell gene expression 
profiles, we cultured T cells sorted from healthy donors (Methods) 
together with two prostate cancer cell lines (Extended Data Fig. 
6c,d) and examined the KLK3 abundance in T  cells after 24 h. 
Co-culturing with the AR-positive C4-2B, but not the AR-negative 
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DU145 cell line, led to a significant increase of KLK3 expression in 
T cells (Fig. 4c). Moreover, administration of EV-containing pellet 
isolated from C4-2B, but not DU145 cell culture supernatant, also 
led to detection of KLK3 in T cells, as determined by both rtPCR 
and RNA fluorescence in situ hybridization (RNA-FISH; Fig. 4d,e). 
Additionally, immunofluorescent staining revealed localization of 
PSA in CD8+ T  cells co-cultured with EVs from C4-2B, but not 
DU145 cells (Extended Data Fig. 6e). A discontinuous ultracentri-
fugation iodixanol gradient of the EV-containing pellet shows that 
both the KLK3 RNA and protein are predominantly present in the 
vesicles but not in the EV free fractions, which are known to con-
tain soluble material (Methods and Extended Data Fig. 6f,g). Taken 
together, these data show that EVs secreted by prostate cancer cells 
can alter the transcriptome of infiltrating T cells.

Ectopic expression of KLK3 is associated with micrometastases. 
Cancer-derived EVs are increasingly recognized for their important 
roles in the tumour–stroma interaction as well as disease develop-
ment and progression37. Because we observed that tumour-derived 
EVs can directly alter T-cell mRNA and protein abundance in local-
ized tumours (Fig. 4d,e), we next asked whether and to what extent 
EVs affect nearby lymph nodes (LNs). Primary prostate tumour 
and two external iliac obturator LN samples were collected from 
an NCCN high-risk patient (Supplementary Table 1, data batch 2) 
treated with radical prostatectomy and pelvic lymph node dissec-
tion. Both magentic resonance imaging (MRI) and histopathologi-
cal analysis showed no metastasis in the LNs (Fig. 4f).

Cells from tumour show distinct separation from LN samples 
(Extended Data Fig. 6h,i). Of interest, we identified a small number 
of epithelial cells in the left but not right LN (Fig. 4g), despite the 
fact that no observable metastasis was detected by imaging or path-
ological examination (Fig. 4f). CNA inference analysis showed that 
a subset of the epithelial cells (84/153) harbour CNAs concordant 
with the averaged tumour CNA profile, strongly suggesting lym-
phatic micrometastases in the left LN (Fig. 4h). We observed wide-
spread KLK3 expression across all the cell types, with the largest 
number (1,209) being T cells, in the left but not the right lymphatic 
samples (Fig. 4i). In line with the expression being EV-mediated, 
the abundance of KLK3 in T cells and the rest of the TME are much 
lower than in epithelial cells (Extended Data Fig. 6j–l). It is worth 
mentioning that in the right LN sample where no micrometastases 
were observed, we detected two T cells and one B cell with KLK3 
expression. This suggests alteration of immune cell gene expression 
in LNs might occur before the actual metastasis takes place, poten-
tially thereby establishing a pre-metastatic niche.

scRNA-seq reveals heterogeneity for cancer-associated fibro-
blasts in the TME. We next investigated the non-immune compo-
nent of the TME, including fibroblasts and endothelial cells (ECs). 
Increasing evidence suggests an important role for cancer-associated 
fibroblasts (CAFs) in prostate cancer progression, and recent 
scRNA-seq-based studies have expanded our understanding of 
their heterogeneity in other cancer types38. We identified 948 fibro-
blast cells (Fig. 5a). The five distinct clusters were classified into 
three subtypes according to similarities among each cluster and key 
marker genes expression (Fig. 5a,b and Extended Data Fig. 7a).

Most markers show unique expression patterns across the three 
subtypes, with only the general mesenchymal gene VIM showing a 
high and universal signal (Fig. 5b). Although ACTA2 and its protein 
product α-actin are common CAF markers in other cancer types, 
immunohistochemistry staining in prostate cancer showed depleted 
expression39. However, here ACTA2 showed abundance compara-
ble to that of VIM in the CAF subsets, and the signal co-expressed 
with other markers. Depleted ACTA2 expression in the previous 
study might have resulted from changes in the stroma composition, 
such as an increase in ACTA2-negative ECs or expansion of the 
ACTA2-low CAF population. In addition, a positive trend, although 
not significant (Spearman’s ρ = 0.38, P = 0.202), was observed 
between the percentage of ACTA2-positive CAF and the epithe-
lial to mesenchymal (EMT) transitioning score in epithelial cells 
(Extended Data Fig. 7b), suggesting EMT being a possible source 
for ACTA2-positive CAFs. Together, these differences highlight the 
complexity of the TME and the need for single-cell-level analysis in 
larger patient cohorts.

We performed gene enrichment analysis on the top 150 
upregulated genes in each CAF subtype. Not surprisingly, the 
angiogenesis-associated genes are enriched in all subtypes (Fig. 
5c), while myofibroblastic, cell adhesion and extracellular matrix 
(ECM) related ones (Fig. 5c and Supplementary Table 3) are more 
subtype-specific. Transcription factor (TF) analysis (Methods) 
showed the most enriched TFs for S2 are CREB3L1 and PLAGL1 
(Extended Data Fig. 7c), genes that control ECM production and 
composition40,41, suggesting ECM activation as an important aspect of 
CAF differentiation. HOXB2 and MAFB have the highest activation 
in S3, while ETS1 is slightly higher in S1. Interestingly, MAFB inhib-
its transcription of myeloid lineage genes mediated by ETS142. This is 
similar to the transdifferentiation of myeloid cells into fibroblast-like 
cells in pathological conditions43. Although more work is needed 
to illustrate the actual source of myofibroblastic CAFs in prostate 
cancer, our data provide evidence for a shared regulatory network 
between CAF and non-fibroblastic lineages in the TME.

Activated ECs modify tumour extracellular matrix. We detected 
3,115 ECs, which are further classified into six subclusters (Fig. 5d). 
We observed universal expression of the endothelial marker gene 
PECAM1. The presence of FLT1 and absence of PDPN expression sug-
gest that the ECs are derived from vascular rather than lymphatic ves-
sels (Fig. 5e). Interestingly, we observed that genes related to activated 
CAFs are highly expressed in EC subsets (Fig. 5e). Specifically, cluster 
2 expressed S100A4, a metastasis-associated gene previously reported 
to promote tumour angiogenesis44. Clusters 3 and 4 are positive for 
THY1, the expression of which on microvascular ECs promotes 
metastasis in melanoma45. Cluster 5 has high abundance of THY1, 
ACTA2 and S100A4, showing a highly CAF-like feature. Together, we 
named these four CAF-marker-expressing EC clusters aECs.

Pseudotime analysis of the aECs using Monocle13 (Methods) sug-
gested two diverging cell fates, starting at clusters 0 and 1, progress-
ing towards clusters 3 and 4 at one end and cluster 5 at the other, 
with cluster 2 being a transitioning state spreading along the axis 
(Fig. 5f). Indeed, differential gene expression analysis attributed 
the six clusters to the four subtypes concordant with the pseudo-
time states (Fig. 5g). A more detailed inspection of the differen-

Fig. 5 | Identifying an activated EC cell subset in stromal cells. a, tSNE view of CAF cells, colour-coded by subtype. b, tSNE view of CAF cells, 
colour-coded by the indicated marker gene abundance. c, Top five most enriched gene ontology (GO) terms for each CAF subset. d,e, tSNE view of 
3,115 ECs, colour-coded by re-evaluated clusters (d) and expression level of marker genes (e). f, All ECs ordered along pseudotime trajectories, with the 
cells colour-coded by cluster. g, Smoothened distribution of representative membrane-protein-coding genes that are differentially expressed among 
EC subtypes. The left dendrogram was calculated using all differential genes and is coloured according to group membership. h, Number of unique cell 
communication pairs in each cell type. i, Overlap among the unique outgoing cell communication pairs from fibroblasts, canonical ECs and activated ECs 
(aECs) to epithelial cells. j, aEC specific outgoing cell communication pairs. k, Genes in ECM–receptor interaction and focal adhesion pathways that show 
differential expression among canonical ECs and aECs. See also Extended Data Fig. 7 and Supplementary Table 3.
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tially expressed genes revealed significant dysregulation of ligands 
and receptors between ECs and aECs. Thus, we next investigated 
cell–cell interactions with CellphoneDB14 (Methods). Notably, aECs 

have higher numbers of inferred interactions with epithelial cells 
(Fig. 5h). Additionally, aECs possess a large portion of the interac-
tions from both classic ECs and fibroblasts (Fig. 5i and Extended 
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Data Fig. 7d). Among the aEC unique pairs are interactions between 
BMP2 and the type I/II BMP receptors (BMPR1A, BMPR2), which 
induce migration and invasion in human ECs (Fig. 5j)46. By con-
trast, EC-specific interactions are enriched for chemokines includ-
ing CCL3, CCL5, CCL18 and CCL23. Immune-activation-related 
genes such as CCL2 and BIRC3 are at low abundance in classic ECs, 

consistent with the previous finding that tumour-associated ECs 
downregulate immune attraction pathways8.

Pathway activation comparison among EC clusters further sup-
ports our analysis (Extended Data Fig. 7e). The top enriched path-
ways in cluster 0 and 1 are mostly immune-related, although the 
most common pathways in aECs are ECM–receptor signalling and 
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focal adhesion (Fig. 5k). Together, these data suggest that aECs 
modify the ECM while further downregulating immune activation.

aECs are enriched in CRPC and promote cancer cell invasion. 
Given that aECs possess metastasis-associated signalling and that 
cancer cells can induce remodelling of the ECM to facilitate dis-
ease spreading47, we hypothesize that aECs are associated with more 
aggressive forms of prostate cancer. We performed scRNA-seq of 
six prostate tissues obtained during radical cystectomy for blad-
der cancer and five tumours from CRPC patients (Fig. 6a,b and 
Supplementary Table 1, batch 3). For patients with bladder can-
cer, pathology analysis did not identify prostatic malignancy for 
patient SC009B, but identified bladder cancer invasion for SC007B 
and low-risk prostate cancer (GS 6) for SC008B. These samples 
capture different elements of the prostate life history and serve as 
controls. For better representation of the spatial heterogeneity of 
the prostate, samples from the left and right peripheral zones of 
each prostate were collected and separately sequenced. We detected 
THY1-positive subsets resembling the aEC population in this 
normal-CRPC cohort (Fig. 6c). Strikingly, the two aEC clusters 
(0 and 1) consisted mostly of cells from CRPC samples (Fig. 6d). 
Pseudotime analysis revealed a progression from classic EC to aEC, 
which is highly correlated with an increase of CRPC cell percentage 
in the clusters (ρ = 0.95, P = 0.001). Activation of the ECM–receptor 
interaction and focal adhesion pathways was also observed in the 
aEC subsets (Fig. 6e).

We next sought to validate the association of aECs with CRPC in 
fresh human tumour samples. We collected primary prostate ade-
nocarcinoma (ADPC) and CRPC samples, as well as normal pros-
tate tissues from bladder cancer patients (n = 4 for each condition). 
aECs were isolated by flow cytometry using CD31 (PECAM1, endo-
thelial cell marker) and CD90 (THY1, CAF cell marker) antibodies. 
Consistent with our analysis, a significantly higher fraction of aECs 
were isolated from CRPC compared to ADPC and normal prostate 
samples (Fig. 6f,g; Student’s test, P = 0.001 and 0.033, respectively). 
To understand the effect of aECs on cancer cells, a co-culture exper-
iment was performed using the CD31+/CD90+ aEC population fol-
lowed by examination of cell invasion. As expected, a significantly 
(Student’s test, P = 0.025) increased invasion was observed in the 
aEC co-culture condition (Fig. 6h).

Discussion
Individual prostate tumours are highly spatially and clonally het-
erogeneous, and the disease varies dramatically among patients19. 
Bulk transcriptome sequencing acquires averaged signals across 
cell mixtures and therefore limits evaluation of these heterogene-
ities. We used scRNA-seq to produce a single-cell transcriptomic 
atlas including primary prostate cancer, metastases, as well as 
non-cancerous ‘normal’ prostate tissues. These data allowed us to 
identify unexpected biological features in distinct cell types.

The observation that the basal/intermediate cell type is the dom-
inant epithelial class in sample 154 appears to conflict with previous 
findings showing the absence of basal cells and expansion of lumi-
nal cells in prostate cancer48. Yet the basal/intermediate cells iden-
tified here are transcriptomically distinct from non-transformed 
prostate basal cells with less abundant KRT5, KRT14 and TP63, 
probably leading to negative detection in histopathology analysis. 
Such dissociation of molecular and phenotypical features of basal 
cells is also supported by the detection of basal-like signatures in 
bulk sequencing of prostate tumours5,6. Moreover, the fact that p63 
protein expression is rare but associated with high-grade tumours49 
aligns well with our observation.

We showed that transcriptomic signatures derived indepen-
dently converge on the same cell population (CellCycle). This 
population only contains 364 cells, accounting for ~1% of all 
cells studied. Nevertheless, 12 of the 13 samples contribute to this  

subset. Such universal existence of aggressiveness ‘seeding’ or an 
active cycling population synergizes with observations in the TME, 
where multiple metastasis-associated programs, including those for 
osteoclasts-like TAMs and aECs, are activated across patients. This 
led to the question as to what factors contribute to such malignant 
remodelling.

The TME, especially the immune component, certainly 
plays a role. Understanding the mechanisms underlying the 
immune-suppressive environment of prostate cancer is of great 
interest. We observed tumour-derived perturbations on immune 
cells. A high level of KLK3 was found in the non-epithelial subsets. 
There is a nonlinear relationship whereby, as the abundance of KLK3 
in T cells increases, an increase of effector cell cytolytic activity is 
observed before a decrease occurs. This might result from the com-
plex interactions between T-cell-activating and -suppressing signals. 
In addition to KLK3, we observed PSA in EVs and EV-co-cultured 
T cells. As the levels of KLK3 in T cells are much lower than in the 
epithelial cells, it is challenging to detect PSA in situ in the back-
ground of high PSA in epithelial cells. It is also unclear whether and 
how KLK3 expression affects T-cell function. Fully illustrating the 
impact of KLK3 in TME cells is a complex and delicate task. Factors 
such as the amount, size and type of EVs generated, as well as the 
duration of TME cell exposure, need to be taken into consideration.

Ectopic KLK3 expression can provide additional clinical infer-
ence. Pre-clinical studies have shown promises of quantifying KLK3 
in pelvic LN for detecting micrometastases50. Here our work has 
hinted at a possible mechanism underlying this molecular analy-
sis of LN metastasis, where a favourable niche in the TME is pre-
pared before actual metastasis happens, allowing tumour-derived 
EVs and/or tumour-educated immune cells to prelude tumour cells 
in migrating into nearby LNs. Such a hypothesis is further sup-
ported by the fact that ectopic KLK3 expression in immune cells 
was detected for the right LN we tested where no micrometastases 
were observed.

Here we have used benign prostate tissues from bladder cancer 
patients as controls. Although challenging to obtain, normal pros-
tate tissues from healthy donors will be important to further validate 
these observations and to exclude potential influences of bladder 
tumours on the prostate microenvironment. Taken together, we 
have revealed a transcriptome landscape in primary tumours where 
multiple metastasis-associated transcriptional programs become 
activated. Our data call for larger single-cell sequencing of prostate 
cancer linked to robust clinical outcome data to advance the iden-
tification of therapeutic targets and the development of biomarkers 
of aggressive disease.
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Methods
Cell lines. PC3 and DU145 cell lines were obtained from Stem Cell Bank, Chinese 
Academy of Sciences, and were cultured in RPMI-1640 supplemented with 9% 
fetal bovine serum (FBS, Gibco) and 1× antibiotic-antimycotic (Gibco). C4-2B 
cells were provided by L. Chung (Cedars-Sinai) and were cultured in RPMI-
1640 supplemented with 9% FBS (Gibco) and 1× antibiotic-antimycotic. For EV 
harvesting, the culture medium was supplemented with 9% EV-depleted FBS (SBI)
d instead of normal FBS.

Human specimens. The prostate tumour samples used in this study were collected 
from patients who had undergone radical prostatectomy at Shanghai Changhai 
Hospital. The non-cancerous prostate samples and an incidental prostate cancer 
sample used in this study were collected from three male patients with bladder 
cancer who had undergone radical cystectomy at Shanghai Changhai Hospital. 
The lymph node samples were collected by lymph node dissection performed 
along with radical prostatectomy. Samples of CRPC were collected using surgical 
procedures outlined in Supplementary Table 1. Human peripheral blood was 
collected from healthy donors. The study is compliant with all relevant ethical 
regulations regarding research involving human participants. The Institutional 
Review Board (IRB) of Shanghai Changhai Hospital approved the tissue acquisition 
procedures and experimental protocols. Informed consent was obtained from 
all participants. Gleason scores and tumour cellularity were evaluated by two 
genito-urinary pathologists on scanned H&E-stained slides. For patient SC001H, 
MRI and bone scans were performed during routine clinical practice. Fresh 
tissue samples were immediately dissected into fractions for (1) flash freezing, (2) 
fixation in 4% paraformaldehyde solution followed by paraffin embedding and (3) 
enzymatic digestion into single cells as described below.

Tissue processing. Fresh tissue samples were surgically removed and kept in 
MACS tissue storage solution (Miltenyi Biotec) until processing. Briefly, samples 
were first washed with phosphate-buffered saline (PBS), minced into small, ~1-mm 
cubic pieces on ice and enzymatically digested with the following protocol: DNase 
I (Worthington; 30 U ml−1), collagenase IV (Worthington; 195 U ml−1), collagenase 
I (Worthington; 10 U ml−1) and 30% FBS for 1 h at 37 °C, with agitation to achieve 
single cells.

After digestion, samples were sieved through a 70-µm cell strainer (Corning) 
and centrifuged at ~300–500g for 8 min. After the supernatant was removed, the 
pelleted cells were suspended in red blood cell lysis buffer and incubated for 2 min 
to lyse red blood cells. After washing with RPMI-1640 medium, the cell pellets 
were resuspended in RPMI-1640 medium and re-filtered through a 35-μm cell 
strainer (Corning).

For the BD Rhapsody platform, the viability of dissociated single cells was assessed 
using Calcein-AM (Thermo Fisher) and Draq7 (BD Biosciences). The single-cell 
suspension was further enriched with a dead cell removal kit (Miltenyi Biotec).

Single-cell RNA sequencing. The 13 samples in batch 1 were sequenced with 10X 
Genomics and the rest of the samples, including batches 2 and 3, were sequenced 
with BD Rhapsody. Detailed methods are outlined in the following sections.

Sequencing with 10X Genomics. Cell capture and cDNA synthesis was carried 
out using the Single Cell 3′ Library and Gel Bead Kit V2 (10X Genomics, cat. no. 
120237) and a Chromium Single Cell A Chip Kit (10X Genomics, 120236). The 
cell suspension (300–600 living cells per microlitre, determined by Count Star) 
was loaded onto the Chromium single-cell controller (10X Genomics) to generate 
single-cell gel beads in the emulsion, according to the manufacturer’s protocol. In 
short, single cells were suspended in PBS containing 0.04% bovine serum albumin 
(BSA). Approximately 7,000 cells were added to each channel, and the target cell 
recovery rate was estimated to be 3,000 cells. Captured cells were lysed and the 
released RNA were barcoded through reverse transcription in individual gel bead 
in emulsions (GEMs)51.

Using an S1000TM Touch Thermal Cycler (Bio-Rad) to reverse transcribe, the 
GEMs were programmed at 53 °C for 45 min, followed by 85 °C for 5 min, then 
held at 4 °C. Complementary DNA (cDNA) was generated and then amplified, and 
the quality was assessed using an Agilent 4200 system (performed by CapitalBio, 
Beijing).

For scRNA-seq library preparation, according to the manufacturer’s protocol, 
scRNA-seq libraries were constructed using a Single Cell 3′ Library Gel Bead Kit 
V2. Sequencing was performed on an Illumina NovaSeq 6000 sequencer with a 
sequencing depth of at least 100,000 reads per cell and 150-bp (PE150) paired-end 
reads (performed by CapitalBio, Beijing).

Sequencing with a BD Rhapsody system. Single-cell capture was achieved by random 
distribution of a single-cell suspension across >200,000 microwells through a 
limited dilution approach. Beads with oligonucleotide barcodes were added to 
saturation so that a bead was paired with a cell in a microwell. Cell-lysis buffer 
was added so that poly-adenylated RNA molecules hybridized to the beads. Beads 
were collected into a single tube for reverse transcription. Upon cDNA synthesis, 
each cDNA molecule was tagged on the 5′ end (that is, the 3′ end of an mRNA 
transcript) with a unique molecular identifier (UMI) and cell label indicating its 

cell of origin. Whole transcriptome libraries were prepared using the BD Rhapsody 
single-cell whole-transcriptome amplification workflow. In brief, second-strand 
cDNA was synthesized, followed by ligation of the WTA adaptor for universal 
amplification. Eighteen cycles of PCR were used to amplify the adaptor-ligated 
cDNA products. Sequencing libraries were prepared using random priming PCR 
of the whole-transcriptome amplification products to enrich the 3′ end of the 
transcripts linked with the cell label and UMI. Sequencing libraries were quantified 
using a High Sensitivity DNA chip (Agilent) on a Bioanalyzer 2200 system and a 
Qubit High Sensitivity DNA assay (Thermo Fisher Scientific). The library for each 
sample was sequenced by HiSeq X Ten (Illumina) on a 150-bp paired-end run.

Flow cytometry and sorting. Prostate cancer tissues were minced and digested 
with collagenase (Sangon Biotech) and DNase (Solarbio). The cell suspension 
was filtered through 100-μm cell strainers (BD Falcon) and centrifuged at 
1,200 r.p.m. for 5 min. The precipitate was resuspended in flow cytometry and 
sorting (fluorescence-activated cell sorting; FACS) buffer (1% FBS/1640 medium) 
and filtered through 70-μm cell strainers (BD Falcon) and washed once with the 
FACS buffer. The resuspended cells were then stained for PSMA (Alexa Fluor 488; 
ab187570, 1:150, Abcam) and CD8 (PerCP/Cy5.5; ab157306, 1:150, Abcam). After 
washing three times with FACS buffer, the prepared cell suspension was filtered 
through 40-μm cell strainers (BD Falcon) and processed by a Sony cell sorter 
SH800S. PSMA+CD8+ cells and PSMA-CD8+ cells were collected, respectively, in 
15-ml centrifuge tubes. The gating strategy to identify the different cell types is 
shown in Extended Data Fig. 6a.

To assay the expression of CD31 and CD90, 106 cells were incubated at room 
temperature for 30 min with 5 μl of FITC anti-human CD31 (cat. no. 303104, 
Biolegend) and 5 μl of PE/cy7 anti-human CD90 (cat. no. 328124, Biolegend), 
while taking 5 μl of non-specific isotype-matched control immunoglobulin-G 
incubated cells as control. Unbound antibodies were removed by washing the cells 
twice in the PBS buffer. The gating strategy to identify different cell types is shown 
in Fig. 6f.

Cells were analysed by a flow cytometer (FC500, Beckman Coulter). FlowJo 
V10 was used for data analysis. All experiments were repeated three times.

Isolation of CD8+ T cells. CD8+ T cells were collected from healthy donor human 
peripheral blood using anti-CD8 microbeads (MACS, Miltenyi) according to the 
manufacturer’s recommendations and were activated for 24 h with TransAct T cell 
reagents (Miltenyi, 130-111-160). Activated T cells were cultured in X-VIVO 
15 culture medium (Lonza, 04-418-QCN) supplemented with 10% FBS (Gibco, 
10091148), 1% penicillin-streptomycin (BasalMedia, J40602) and anti-human 
interleukin-2 (Peprotech, 200-21-100; 100 U ml−1).

RNA-FISH analysis. RNA-FISH was conducted using a Ribo fluorescence in situ 
hybridization kit (C10910, RiboBio) in accordance with the manufacturer’s 
directions and as previously described52. In brief, the cells were seeded and 
fixed with 4% paraformaldehyde and treated with 0.5% Triton in PBS followed 
by pre-hybridization. The fixed cells were then hybridized at 5 mM probe 
concentration overnight. KLK3 FISH probes (LNC1101594, RiboBio) were 
designed and synthesized by RiboBio. All images were visualized and obtained by a 
confocal microscope (Philips).

Cell line immunofluorescent staining. After co-culturing, T cells were mounted 
on adhesion microscope slides (CITOTEST, cat. no. 188105), then 0.3% Triton 
X-100 was used to permeabilize the cell membrane. Immunol staining blocking 
buffer (Beyotime, cat. no. P0102) was added to block non-specific binding for 1 h. 
Slides were incubated overnight with antibodies against CD8 (Abcam, ab237709, 
1:100) and PSA (Abcam, ab140337, 1:100) at 4 °C in a moisture chamber. Slides 
were washed in PBS three times then incubated for 1 h with fluorescence-labelled 
secondary antibodies (CST 4409 and 4412, 1:1,000, Invitrogen) at room 
temperature in a light-proof moisture chamber. Slides were washed three times in 
PBS, then the nuclei were stained with DAPI (Beyotime, cat. no. C1005) for 10 min. 
The slides were then examined and captured using a fluorescence microscope 
(Olympus).

Isolation and culture of primary fibroblasts. Primary prostate fibroblasts were 
isolated from freshly removed prostate samples from eight patients with prostate 
cancer (PCa) and four cases of patients undergoing radical cystectomy for 
invasive transitional cell carcinoma of the bladder without any histopathological 
evidence of carcinoma in the prostate. All tissues were minced with scalpels 
and then enzymatically dissociated in DMEM/F12 medium (cat. no. 11330-032, 
Gibco) supplemented with 2% BSA, 10 ng ml−1 cholera toxin (cat. no. c8052, 
Sigma), 300 U ml−1 collagenase (cat. no. 17018-029, Invitrogen) and 100 U ml−1 
hyaluronidase (cat. no. H3506, Sigma) at 37 °C for 18 h. The digested suspension 
was centrifuged at 600 r.p.m. for 4 min to separate the epithelial and fibroblast cells. 
To pellet the fibroblasts, the supernatant was collected and centrifuged at 800 r.p.m. 
for 10 min. The cell pellet containing the fibroblasts was resuspended in DMEM/
F12 medium supplemented with 10% FBS (Gemini) and 5 μg ml−1 insulin (cat. 
no. 40112ES25, Yeasen). All tissues were obtained from the Shanghai Changhai 
Hospital (see ‘Human specimens’ section).
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Co-culture experiment. A total of 2 × 106 activated T cells were co-cultured with 
2 × 106 AR-positive (C4-2B) or -negative (DU145) PCa cells in six-well plates for 
24 h. Activated T cells without co-culture of PCa cells served as a negative control. 
CD3+ T cells were collected by immunostaining with PE-conjugated anti-CD3 
antibodies (cat. no. 300307, BioLegend, 1:20) and sorted using a FACSAria III cell 
sorter (BD Biosciences) following the manufacturer’s protocols.

EV isolation. The process of EV isolation was conducted as previously 
described53,54, with minor modifications. Briefly, PCa cells (DU145, C4-2B) were 
cultured in RPMI-1640 (Gibco) supplemented with 10% exosome-depleted FBS 
(SBI). After 48 h, the cell culture medium was collected and centrifuged at 400g 
at room temperature (RT) to remove cell debris. To further remove apoptotic 
bodies and microvesicles, the medium supernatant was collected and subjected 
to the following centrifugation steps at 4 °C: (1) 2,000g, 20 min; (2) 15,000g, 
40 min. The resulting supernatant was passed through a 0.22-μm Millex-GP 
filter (Millipore, cat. no. SLGP033RB) and subjected to ultracentrifugation at 
120,000g for 4 h to pellet EVs. The supernatant was carefully removed, and 
crude EV-containing pellet was resuspended in a large volume of ice-cold PBS, 
followed by ultracentrifugation at 120,000g to wash the EV product. EV protein 
concentration was evaluated using a Pierce BCA protein assay kit (Thermo 
Fisher) and used to estimate EV quantity. EV isolation for gradient centrifugation 
analysis was performed with an SW28 swinging rotor (Beckman Coulter) with 
minor modifications.

EV administration experiment. Approximately 2 × 106 activated T cells were 
seeded in six-well plates and subsequently treated with EVs derived from PCa cells 
DU145 or C4-2B for 24 h. RNA of T cells was isolated using RNAiso Plus Reagent 
(Takara, cat. no. 9109).

Analysis of EV isolates with gradient centrifugation. Gradient centrifugation 
of EV. Freshly pelleted EVs were resuspended in filtered PBS and deposited 
at the bottom of an ultracentrifuge tube, then 30% (4.3 ml, 1.18 g ml−1), 25% 
(3 ml, 1.15 g ml−1), 15% (2.5 ml, 1.10 g ml−1) and 5% (6 ml, 1.05 g ml−1) iodixanol 
solutions were sequentially layered in decreasing density to form a discontinuous 
gradient55. Separation was performed by ultracentrifugation at 100,000g for 3 h 
50 min (4 °C, k-factor 254.7) and density fractions were collected separately and 
diluted up to 17 ml in PBS. Each density fraction was then split into two for the 
collection of RNA and protein, spun at 100,000g (60 min, 4 °C) and resuspended in 
the appropriate buffer. All ultracentrifugation spins were performed in an SW28 
swinging rotor (Beckman Coulter).

Immunoblotting. For immunoblotting analysis, freshly pelleted material  
from the flotation of small EVs was resuspended in 100 µl of 4% SDS/Tris-HCl  
lysis buffer and 10 µl of sample was loaded in each lane. Whole cell lysate  
(1 µg) from parental cells was included as a control. Immunoblotting analysis  
was performed as described previously56. The primary antibodies used were  
PSA (sc-7638 (C-19), 1:5,000 dilution) from Cell Signaling and GM130  
(ab52649 (EP892Y), 1:10,000 dilution) and CD81 (ab79559 (M38), 1:10,000 
dilution) from Abcam.

Extraction of total RNA and quantitative PCR. Total RNA was extracted with Trizol 
reagent (Invitrogen) according to the manufacturer’s directions. Briefly, freshly 
pelleted material from each of the density fractions was resuspended in 1 ml of 
Trizol, mixed with 200 µl of chloroform and centrifuged at 12,000g (4 °C, 15 min) 
for collection of the total RNA fraction within the aqueous phase. Total RNA 
was then precipitated in one volume of ice-cold 2-propanol in the presence of 
20 µg ml−1 glycogen (Invitrogen) for 24 h. RNA was then collected (12,000g, 10 min, 
4 °C), washed in 75% RNase-free ethanol and resuspended in 20 µl of RNase-free 
water. Samples were stored at −20 °C until use.

cDNA from 10 µl of total RNA was obtained with the iScript cDNA synthesis 
kit (Bio-Rad) following the manufacturer’s instructions. The resultant 20 µl of 
cDNA was then subjected to TaqMan qPCR in a QuantStudio 5 real-time PCR 
device (Applied Biosystems) for the probes ACTB (Hs01060665_g1), GAPDH 
(Hs99999905_m1) and KLK3 (Hs02576345_m1). Samples were run in duplicate 
and negative controls were included.

Quantitative real-time PCR. Total RNA was isolated from cells using RNAiso Plus 
reagent (Takara) and reverse transcribed into first-strand cDNA with a PrimeScript 
II 1st Strand cDNA synthesis kit (Takara). The samples were then analysed in 
an Applied Biosystems 7500 Real-Time PCR system. β-actin was used as an 
endogenous control.

Cell invasion assay. To measure the effect of aECs on prostate cancer cell invasion 
ability, aECs (1 × 105) were seeded into the upper chamber and PC-3 cells (5 × 105) 
were added into the lower chamber of a six-well cell culture insert with 0.4-μm 
pore size (Merck Millipore, PHT30R48), taking parental fibroblasts as the control 
group. The cells were co-cultured for 96 h before invasion assays.

BD Falcon cell culture inserts (8 μm; cat. no. 353097, BD) precoated with 
Matrigel (cat. no 356234, BD) were used for examining cell invasion. A suspension 

of PC-3 cells co-cultured with parental cells or with CD31+/CD90+ aECs was 
placed into the upper chamber in 0.2 ml of F12k serum-free medium (1 × 105 cells 
per filter). F12k medium supplemented with 10% FBS was placed in the lower 
chamber as a chemoattractant. Invasion was scored following 48 h. Cells at the 
lower surface of the inserts were then fixed in 4% paraformaldehyde (Sangon 
Biotech, cat. no. A500684) for 30 min at room temperature and stained with 
Coomassie brilliant blue (BBI, cat. no. A602151) for 30 min. Values for cell invasion 
were expressed as the mean number of cells per microscopic field over five fields 
per one insert for triplicate experiments.

Statistics and reproducibility. Statistical analyses were performed using the 
R statistical environment (v3.5.1). For cell line experiments, data were shown 
as mean ± s.d., n represents the number of technical replicates, and biological 
replicates were shown separately unless otherwise stated in figure legends. 
Experiments were repeated at least twice with similar results unless otherwise 
stated in the legends. All tests were two-sided unless otherwise specified. CLES was 
calculated using the R package canprot (v0.1.2). The type of test method used for 
statistical analysis is specified in the text where the results are described and details 
for the test are explained in the relevant figure legend and Methods section. For 
the Student’s t-test, a Shapiro–Wilk test was used to test for normality. For survival 
analysis, the assumptions of the Cox proportional hazards model were tested using 
the ‘cox.zph’ function in the R Survival package (v2.41-3) with 0.1 as cutoff. A 
log-rank test was used when the cox.zph test failed. For samples where KLK3 could 
not be detected after 40 cycles in rtPCR analysis, 40 was assigned as the Ct (cycle 
threshold) value in calculations.

Sequencing data preprocessing. We applied fastp57 with default parameter filtering of 
the adaptor sequence and removing the low-quality reads.

For data generated with the BD platform, Umi-tools (v1.0.0) was applied to 
identify the cell barcode whitelist. Raw data were mapped using STAR (v2.5.2b) 
with default parameters from the UMI-tools standard pipeline to obtain the UMI 
counts of each sample. For data generated with the 10X platform, raw data were 
processed using cellranger (v2.1.0) into the UMI matrix. For all analysis, human 
genome (ensemble hg38, v91) was used as the reference. The maximum number of 
cells (6,152) in one sample was estimated by cellranger across 13 samples and was 
used as the estimation of cell number. The top 6,152 cells with the highest number 
of genes from each sample are included for further analysis.

For each cell, we calculated three quality measures: percent of mitochondrial 
genes, number of total genes and housekeeping genes expressed9. We removed 
cells that had more than 20% expression on mitochondrial genes, fewer than 200 
or more than 5,218 total genes expressed, or fewer than 56 housekeeping genes 
expressed9.

The resultant gene expression matrix was imported into the R (v3.5.1) 
statistical environment for further analysis. Data normalization and  
annotation were performed using the R package scran (v1.10.2)58. To calculate  
the pool-based normalization factor, cells for each sample were first split  
into sensible clusters using the quickCluster function (max.size = 3,000).  
The fastMNN function (k = 5, d = 50, approximate = TRUE, auto.order = TRUE) 
was used to apply the mutual nearest-neighbour method to correct for  
batch effect among samples.

Major cell type annotation and CNA inference. The normalized and batch 
corrected data were imported into Seurat (v2.3.4)59 for downstream analysis 
and visualization. Dimensionality reduction was then performed with principal 
component analysis on the batch corrected data. We then performed tSNE 
dimensionality reduction on the calculated principal components (PCs) to obtain a 
two-dimensional representation for data visualization. A shared nearest-neighbour 
graph was also calculated using the top eight PCs to determine clusters using the 
function FindClusters.

To annotate the identity of each cluster, we performed QuSAGE (2.16.1)15 
analysis as described before16. Briefly, script was adapted from this previous 
work, then (1) a list of marker genes for different cell types was collected, (2) the 
activation score for each cell type was calculated using the qusage function and (3) 
the cell type with the highest positive activation score was assigned to each cluster. 
We used the previously reported signature16 to assign broad lineage (epithelia and 
stroma) for cells. For detailed annotation, a list of marker genes was collected from 
a public database and previous work10,60,61.

Copy number analysis was performed as previously described9 with the R 
package inferCNV(v0.8.2) (cutoff = 0.1). The obtained residual expression for each 
gene is a surrogate for CNAs of the gene and the extent of CNAs for each sample 
was defined as the mean of squares of deviation across the genome.

Differential gene expression analysis. To identify differentially expressed (marker) 
genes for clusters or subtypes, the functions FindAllMarkers (multiple condition 
comparisons) and FindMarkers (two condition comparison) from the Seurat 
package were used with default parameters. Significant differentially expressed 
genes (markers) were selected as those with adjusted P values less than 0.05, 
average fold-change larger than 1.5 and percentage of cells with expression  
higher than 0.1.
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Cell-cycle analysis. The cyclone function from the R package scran58 was used for 
cell-cycle analysis.

Survival and correlation analysis in bulk RNA-seq data. For survival analysis, the 
assumption of the Cox proportional hazards model was tested using the cox.
zph function in the R Survival package (v2.41-3) with 0.1 as cutoff. The Cox 
proportional hazards model was then fit using patient groups dichotomized by 
median level of signature, with BCR as endpoint. Data visualization was performed 
using the R library BPG (v5.9.8)62.

Marker genes for different cell populations were identified as described in the 
‘Differential gene expression analysis’ section. A signature score was calculated as 
the mean expression of all marker genes.

Bulk RNA-seq data from previous studies were collected for survival analysis. 
For GSE70770, data were downloaded with the R package GEOquery (v2.50.5)63. 
Memorial Sloan-Kettering Cancer Center (MSKCC) data and BCR information 
were downloaded with the R package cgdsr (v1.2.10). Other clinical information 
was downloaded from GSE2103417 with GEOquery. For all five datasets, z-score 
normalization was performed on the non-log2-transformed expression matrix.

For correlation analysis, z-score normalization was performed on the 
log2-transformed expression matrix. For correlation analysis in the TCGA dataset, 
data for 499 prostate cancer samples were downloaded using the R package 
TCGA2STAT (v1.2)64.

Reanalysis of major cell types. For subtype assessment within the major cell types, 
we re-analysed cell subsets separately. For each TME cell subset, we used the top 
10 MNNs of 20 re-analysed MNNs for tSNE construction, using a resolution of 0.8 
for graph-based clustering to identify the cell cluster. All 20 MNNs were used for 
epithelial cell reanalysis.

Pseudotime analysis. We applied the Single-Cell Trajectories analysis with 
Monocle213 using DDR-Tree and default parameters. For Monocle analysis, positive 
marker genes for each cluster were used. Based on the pseudotime analysis, 
branch expression analysis modelling (BEAM analysis) was applied for branch fate 
determined gene analysis.

Cell communication analysis. To enable a systematic analysis of cell–cell 
communication molecules, we applied cell communication analysis based on 
CellPhoneDB (v1.1.0)14, a public repository of ligands, receptors and their 
interactions. Membrane, secreted and peripheral proteins of the cluster of different 
time points were annotated. Significant mean and cell communication significance 
(P < 0.05) was calculated based on the interaction and the normalized cell matrix 
achieved by scran normalization.

Transcription factor analysis. To assess TF regulation strength, we applied the 
single-cell regulatory network inference and clustering (pySCENIC, v0.9.5)12 
workflow, using the 20-thousand motifs database for RcisTarget and GRNboost.

Gene enrichment analysis. For gene enrichment analysis, Fisher’s exact test was 
applied to calculate the P value for each gene set. Raw P values were adjusted 
for multiple hypothesis tests using the Benjamini and Hochberg method. Such 
enrichment analysis was applied to annotations including GO (v2.5.13), the Kyoto 
Encyclopedia of Genes and Genomes (KEGG, 201900613) and customized gene 
sets as indicated in the relevant figure legends and main text. We downloaded 
the GO annotations from NCBI (http://www.ncbi.nlm.nih.gov/), UniProt 
(http://www.uniprot.org/) and Gene Ontology (http://www.geneontology.org/). 
KEGG annotation was purchased from the database (https://www.genome.jp/
kegg/). A customized 41-signature gene set including immune-, cytokine- and 
neurobiology-related terms was collected from the CellphoneDB database, the 
neurotransmitters receptor gene of Genebank (https://www.ncbi.nlm.nih.gov/
genbank/) and the immune scoring gene set from previous work7.

To characterize the relative activation of a given gene set, the R package 
QuSAGE was used as described in the ‘Major cell type annotation and CNA 
inference’ section.

Co-regulated gene analysis. To discover the gene co-regulation network, the find_
gene_modules function of Monocle365 was used with default parameters.

Analysis of public scRNA-seq data. To analyse the epithelial gene expression in 
T cells, several data matrices were collected from NCBI GEO datasets, including 
NSCLC66, CRC67, HCC51 and HNSCC10. T cells were identified as defined in the 
Supplementary Information.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data have been deposited in the Gene Expression Omnibus (GEO) under accession 
no. GSE141445 and the Genome Sequence Archive for Human (GSA-Human) 
under accession HRA000312 and can be accessed at www.pradcellatlas.com.  

For gene expression analysis in T cells, scRNA-seq data from the following NCBI 
GEO accessions were used: GSE99254 (NSCLC)66, GSE108989 (CRC)67 GSE98638 
(HCC)51 and GSE103322 (HNSCC)10. For survival analysis, bulk RNA-seq data 
from the following studies were used: TCGA (333 samples, http://firebrowse.
org/?cohort=PRAD)4, ref. 17 (131 samples, MSKCC, https://doi.org/10.1016/j.
ccr.2010.05.026), ref. 68 (294 samples, GSE70770), ref. 69 (79 samples, https://doi.
org/10.1172/JCI20032/) and Changhai 2020 (136 samples, www.cpgea.com)70. All 
other data supporting the findings of this study are available from the corresponding 
author on reasonable request. Source data are provided with this paper.

Code availability
All R packages used are available online, as described in the Methods. Customized 
code for data analysis and plotting are available on GitHub (https://github.com/
chensujun/scRNA).
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Single cell characterization and CNV inference analysis of prostate tumours. tSNE view of 36,424 single cells, color coded by 
sample (a), cluster (b) and broad lineage (c). d, Inferred CNA for cells in tumour 156. e, the CNA score and correlation for each cell in the indicated 
sample. Red, CNA score > 0.04 and CNA correlation >0.4; blue, CNA score <0.04 and CNA correlation <0.4; black, all remaining cells. f, Percentage of 
genes showing strong CNV (averaged CNA score > 0.1 in putative malignant cells) in our data (PCa, n = 13 tumor samples) and that from Tirosh et al. 
(Mel, n = 14 tumor samples). P value calculated with two-sided Mann-Whitney U test. g, tSNE view of 36,424 single cells, color coded by inferred cell 
malignancy identity. For box plots, center line represents the median and box limits represent upper and lower quartiles, and whiskers depicts 1.5× the 
interquartile range (IQR), extreme values outside of this range is shown as individual points. Statistical data for Extended Data Fig. 1f are provided in the 
source data.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Gene expression and signature analysis for different cell types. a, Heatmap shows the relative abundance of 27 genes in the ‘T cell 
costimulation’ process in each cell. The top color bar indicates cell types and the left color bar shows the mean UMI of genes. b, tSNE view of 36,424 
single cells, color coded by epithelial subtypes. c, Smoothened distribution of PAM50 signature score, cells grouped by annotated cell type. d, Smoothened 
distribution of high Gleason Score (GS) related signature, cells grouped by annotated cell type. Signature score calculated as the mean of z-score for the 
19 high GS related genes identified by Pressinotti et al.20. e, Smoothened distribution of 3 high GS related individual genes; cells grouped by annotated cell 
type. Y-axis shows normalized UMI (nUMI) in logarithm scale.
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Extended Data Fig. 3 | Characterizing different epithelial cell derived programs. a, tSNE view of 23,674 epithelial cells, colour-coded by sample. b, 
Smoothened distribution for four prostate cancer related signatures in epithelial cell clusters as defined in Fig. 2a. P-values for cluster 10 compared to all 
other cells for Luminal A, Luminal B are <2.2 × 10−16; CLESs are 0.26 and 0.14, respectively; P-values for cluster 12 compared to all other cells for Luminal 
A, Luminal B, Hypoxia and PCS1 are <2.2 × 10−16: CLESs are 0.04, 0.79, 0.88 and 0.995, respectively. P values are two-sided and not adjusted for multiple 
comparisons. c, Smoothened distribution of the indicated signature score, TME and epithelial cells grouped by their assigned cell types and clusters, 
respectively. P-values (Mann-Whitney U test, two-sided) for cluster 12 CellCycle and cluster 10 basal/intermediate signatures compared to all the rest 
cells are < 2.2 × 10−16; CLESs are 0.998 and 0.98, respectively. d, GO terms enriched in CellCycle subtype (left) and contingency table showing number of 
cells in G2/M for CellCycle subtype compared to all the other cells (right), One-sided P value calculated with Fisher’s exact test. OR = 5.7. e, Comparison 
of BCR-free rate between the high and low groups stratified using CellCycle signature across multiple datasets. P-values are calculated using Cox 
proportional hazard model (CoxPH) and not adjusted for multiple comparisons. Numbers in brackets show 95% CI for PH.
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Extended Data Fig. 4 | Characterizing the basal/intermediate signature. a, Comparison of BCR-free rate between the high and low groups stratified 
using Basal/Intermediate signature in the indicated datasets. P-values are calculated using Cox proportional hazard model (CoxPH) and not adjusted for 
multiple comparisons. Numbers in brackets show 95% confidence interval (CI) for hazard ratio (HR). b, Correlation between tumour purity corrected 
CCL2 expression and basal/intermediate signature in TCGA. c, Correlation between macrophage, T cell and basal/intermediate signature across multiple 
datasets. Two-sided P values calculated for Spearman’s rank correlation and not adjusted for multiple comparisons.
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Extended Data Fig. 5 | Single cell transcriptome reveals immune cell heterogeneity. a, Schematics for all C6 specific incoming signals. b, Percentage of 
C6 TAM cells in each sample. c, Differentially activated metabolism-related pathways. d, tSNE view of 3,116 T cells, color coded by the average expression 
of lipid mediator, glycogen metabolism and glycolysis genes. e, Smoothened distribution of AR signature gene abundance, cells grouped by cluster. f, 
Genes in module 61. Line length and circle size corresponds to expression correlation between KLK3 and the indicated gene. Statistical data relevant to 
Extended Data Fig. 5b are provided in the source data.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Analysis of KLK3 expression in T cells. Flow cytometry sorting strategy (a) and statistics (b) of PSMA+ CD8 T cells. Relative 
expression of KLK3 in the indicated prostate cancer cell lines c) and EVs (d) derived from them. e, Examination of KLK3 protein (PSA, red) in T cells 
(CD8+, green) after co-culture with EVs derived from the indicated prostate cancer cell lines by fluorescence microscopy. Scale bars, 10μm. Data show 
representative results of two repeats. f, Immunoblot for small EV-enriched (CD81) and depleted proteins (GM130) in C4-2B EVs. EVs collected by 
differential centrifugation followed by density gradient purification. 1µg of protein was loaded for whole cell lysate (WCL). Same volume was loaded for 
S-EV fractions. g, rtPCR for the indicated probes in C4-2B small EVs collected by differential centrifugation and floated in different density fractions. 
tSNE view showing cells from the high-risk prostate cancer patient (SC001H), color coded by the tissue source (h) or cell type (i). Distribution of KLK3 
expression in different cell types for samples from Batch 1 data (j) (n = 22,667, 7,495 and 629 cells for epi., immune and stroma groups, respectively), 
tumour tissue (k) (n = 700, 4,038 and 594 cells for epi., immune and stroma groups, respectively) and left LN (l) (n = 153, 1,954 and 2 cells for epi., 
immune and stroma groups, respectively) from Batch 2. Two-sided P values are calculated using Mann-Whitney U test. Y-axis of j-l represents natural 
logarithm scale. For box plots, center line represents the median and box limits represent upper and lower quartiles, and whiskers depicts 1.5× the IQR, 
extreme values outside of this range is shown as individual points. Statistical data relevant to Extended Data Fig. 6c-d, g are provided in the source data. 
Unprocessed Western Blots relevant to Extended Data Fig. 6f are provided in the source data.
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Extended Data Fig. 7 | Single cell characterization of stromal components. a, Hierarchical clustering using all subtype marker genes, color coded by 
subtypes. b, Correlation between EMT score in epithelial cells and percentage of ACTA2+ CAF. Two-sided P values calculated for Spearman’s rank 
correlation and not adjusted for multiple comparisons. c, tSNE view CAF cells, color coded by activation level of the indicated TFs (AUC). d, Overlap of the 
unique incoming cell communication pairs from epithelial cells to fibroblast, regular EC and aEC. e, Top 5 most enriched pathways for each cluster.
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection For GSE70770, data was downloaded with R package GEOquery (v2.50.5). MSKCC data and BCR information was downloaded with R 
package cgdsr (v1.2.10). Other clinical information was downloaded from GSE2103433 with GEOquery (v2.50.5). Data for 499 prostate 
cancer samples were downloaded using R package TCGA2STAT (v1.2). 

Data analysis All R packages used are available online as described in the method section. Customized code for data analyzing and plotting can be 
found on GitHub: https://github.com/chensujun/scRNA. 
Software used: R statistical environment (v3.5.1); Umi-tools (v1.0.0); Cellranger (v2.1.0); STAR (v2.5.2b); FlowJo (v10) 
R packages: Survival (v2.41-3); BPG (v5.9.8); Seurat (v2.3.4); scran (v1.10.2); QuSAGE (2.16.1); InferCNV (v0.8.2); Monocle2; Monocle3; 
GEOquery (v2.50.5); cgdsr (v1.2.10); TCGA2STAT (v1.2); canprot (v0.1.2) 
Python package: pySCENIC (v0.9.5); CellphoneDB (v1.1.0) 
Website: CellphoneDB (v1.1.0)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Data were deposited in Gene Expression Omnibus (GEO) under the accession GSE141445 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE141445 ), the 
Genome Sequence Archive for Human (GSA-Human) under the accession HRA000312 (https://bigd.big.ac.cn/gsa-human/browse/HRA000312 ), and can be accessed 
at www.pradcellatlas.com . 
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For survival analysis, bulk RNA-seq data from the following study were used: TCGA (333 samples, http://firebrowse.org/?cohort=PRAD), Taylor et al. (131 samples, 
MSKCC, https://doi.org/10.1016/j.ccr.2010.05.026), Ross-Adams et al. (294 samples, GSE70770), Glinsky et al. (79 samples, https://doi.org/10.1172/JCI20032/), and 
Changhai 2020. (136 samples, www.cpgea.com).  
For gene expression analysis in T cells, scRNA-seq data from the following GEO accessions were used: GSE99254 (NSCLC), GSE108989 (CRC), GSE98638 (HCC) and 
GSE103322 (HNSCC). 
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size For single cell analysis, the thousands of individual profiles obtained from each tissue sample provide sufficient power. There is thus no formal 
sample size calculation. We do seek proper representation for prostate cancer and required at least three patients in groups classified 
according to major clinical features: e.g. patients with Gleason score no greater/less than 7, patients with T2/T3/T4 stage, patients with/
without intraductal carcinoma and patients with/without lymphatic/bone metastasis. All patients meeting the clinical criteria with proper 
consent were included.    
For functional studies, statistical significance can be derived from the results, representing sufficient power using the given sample size. 

Data exclusions The single cell expression profiles obtained were subjected to quality control and low quality cells were excluded from analysis. Exclusion 
criteria were established in previous work or according to the manufacturer's instruction and were described in detail in Methods section:We 
removed cells that have higher than 20% expression on mitochondrion genes, lower than 200 or higher than 5218 total genes expressed, or 
lower than 56 housekeeping genes expressed.

Replication For human biological specimens, entire samples were used for processing, hence, no additional replicates were available. For functional 
studies, we conducted at least 2 independent experiments. We performed at least 3 independent experiments where statistics is needed. 
Experimental observations were reproducible and successful among the independent experiments. 

Randomization The work required no randomization: Human specimen were allocated into groups according to disease status (benign, prostate 
adenocarcinoma, CRPC etc.). For functional studies, specimens were subjected to different treatment and were allocated to different groups 
accordingly.

Blinding Blinding was not relevant to our study: Patient sample allocation was predetermined by their known disease status. Specimens in functional 
experiments were grouped according to the treatments they were subjected to.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Rabbit monoclonal anti-CD8 (Cat# ab237709, 1:100, Abcam); 

Mouse monoclonal anti-PSA (Cat# ab140337, 1:100, Abcam); 
Goat anti-mouse IgG (Cat# 4412; 1:1000, Invitrogen); 
Goat anti-rabbit IgG (Cat# 4409; 1:1000, Invitrogen);  
PE Conjugate anti-CD3 (Cat# 300307, 1:20, BioLegend); 
PSMA (ab187570, 1:150, Abcam); 
CD8 (ab157306, 1:150, Abcam);  
FITC anti-human CD31 (Cat. #303104; 1:20, Biolegend);  
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CD90 (Cat. #328124; 1:20, Biolegend); 
GM130 (ab52649 [EP892Y], 1:10,000, Abcam); 
CD81 (ab79559 [M38], 1:10,000, Abcam); 
PSA (sc-7638 [C-19]; 1:5,000, Cell Signaling) 

Validation Rabbit monoclonal anti-CD8 (Cat# ab237709, 1:100, Abcam), Mouse monoclonal anti-PSA (Cat# ab140337, 1:100, Abcam), Goat 
anti-mouse IgG (Cat# 4412; 1:1000, Invitrogen) and Goat anti-rabbit IgG (Cat# 4409; 1:1000, Invitrogen) are validated by vendor 
for IF; 
PE Conjugate anti-CD3 (Cat# 300307, 1:20, BioLegend) is validated by vendor for flow; 
PSMA (Alexa Fluor® 488) (ab187570, 1:150, Abcam) is validated by vendor for flow; 
CD8 (ab157306, 1:150, Abcam) is validated by vendor for flow, IP;  
FITC anti-human CD31 (Cat. #303104; 1:20, Biolegend) and CD90 (Cat. #328124; 1:20, Biolegend) is validated by vendor for flow;  
GM130 (ab52649 [EP892Y], 1:10,000, Abcam) is validated by vendor for WB; 
CD81 (ab79559 [M38], 1:10,000, Abcam) has been validated in publication PMID:32341353 for WB; 
PSA (sc-7638 [C-19]; 1:5,000, Cell Signaling) has been validated in publication PMID:25864123 for WB 

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) DU145 (Stem Cell Bank, CAS, TCHu222);  PC3 (Stem Cell Bank, CAS, TCHu158); C4-2B was originally provided by Dr. Leland 
Chung (Cedars-Sinai), who established the cell line (PMID: 8168083).

Authentication DU145 has been authenticated by STR analysis at GENEWIZ Inc. PC3 cells have been authenticated by STR analysis, as 
declared by Stem Cell Bank, Chinese Academy of Sciences (CAS). C4-2B cell line has been authenticated by STR analysis at 
Shanghai Integrated Biotech Solutions Co, Ltd.  

Mycoplasma contamination DU145 and PC3 cells have been tested negative for Mycoplasma contamination, as declared by Stem Cell Bank, Chinese 
Academy of Sciences (CAS). C4-2B cells have been tested negative for Mycoplasma contamination using MycAwayTM -Color 
One-Step Mycoplasma Detection Kit (40611ES25, Yeasen).

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used in the study.

Human research participants
Policy information about studies involving human research participants

Population characteristics All patients involved in this study were male aged 55-81 with prostate or bladder cancer undergone radical prostatectomy or 
radical cystectomy.  
In experiments using healthy donors, population characteristics are controlled by allocating specimens from the same patient 
into treatment and control groups, and are thus not relevant covariates.  

Recruitment Patients who were consented and met the clinical criteria were included. The healthy donors for collection of peripheral blood 
are consecutive healthy participants with consent. There are no other criteria for selecting patients to this study. There are no 
self-selection bias or other biases in recruitment.

Ethics oversight The Institutional Review Board (IRB) of Shanghai Changhai Hospital approved the tissue acquisition procedures and experimental 
protocols

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry
Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Prostate cancer tissues were minced and digested with collagenase (Sangon Biotech) and DNase (Solarbio). The cell suspension 
was filtered through 100μm cell strainers (BD Falcon) and centrifuged at 1200rpm for 5min. The precipitate was resuspended in 
FACS buffer (1% fetal bovine serum/1640 medium) and filtered through 70μm cell strainers (BD Falcon) and washed once with 
FACS buffer. The resuspended cells were then stained for PSMA (Alexa Fluor® 488) (ab187570, 1:150, Abcam) and CD8 (PerCP/
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Cy5.5®) (ab157306, 1:150, Abcam). After washed for three times with FACS buffer, the prepared cell suspension was filtered 
through 40μm cell strainers (BD Falcon) and processed by Sony cell sorter SH800S. PSMA+CD8+ cells and PSMA-CD8+ cells were 
collected respectively in 15ml centrifuge tubes.  
To assay the expression of CD31 and CD90, 10^6 cells were incubated at room temperature for 30 min with 5 μl of FITC anti-
human CD31 (Cat. #303104; Biolegend) and 5 μl of PE/cy7 anti-human CD90 (Cat. #328124; Biolegend). Taking 5 μl of non-
specific isotype-matched control IgG incubated cells as control. Unbound antibodies were removed by washing the cells twice in 
PBS buffer.  

Instrument flow cytometor(FC500; Becckman).

Software FlowJo V10 was used for data analysis.

Cell population abundance Cells collected for following experiments were both CD31 and CD90 positive via flow cytometor sorting.

Gating strategy CD31 and CD90 were used to identify aECs from non-aECs.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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