Check for updates

MET-dependent solid tumours — molecular diagnosis and targeted therapy

Robin Guo¹, Jia Luo¹, Jason Chang¹, Natasha Rekhtman², Maria Arcila² and Alexander Drilon^{1,3 \boxtimes}

Abstract | Attempts to develop MET-targeted therapies have historically focused on MET-expressing cancers, with limited success. Thus, MET expression in the absence of a genomic marker of MET dependence is a poor predictor of benefit from MET-targeted therapy. However, owing to the development of more sensitive methods of detecting genomic alterations, high-level *MET* amplification and activating *MET* mutations or fusions are all now known to be drivers of oncogenesis. *MET* mutations include those affecting the kinase or extracellular domains and those that result in exon 14 skipping. The activity of MET tyrosine kinase inhibitors varies by *MET* alteration category. The likelihood of benefit from MET-targeted therapies increases with increasing levels of *MET* amplification, although no consensus exists on the optimal diagnostic cut-off point for *MET* copy number gains identified using fluorescence in situ hybridization and, in particular, next-generation sequencing. Several agents targeting exon 14 skipping alterations are currently in clinical development, with promising data available from early-phase trials. By contrast, the therapeutic implications of *MET* fusions remain underexplored. Here we summarize and evaluate the utility of various diagnostic techniques and the roles of different classes of MET-targeted therapies in cancers with *MET* amplification, mutation and fusion, and MET overexpression.

Dysregulation of the receptor tyrosine kinase c-MET (hereafter referred to as MET) is an established driver of oncogenesis¹ (BOX 1). In comparison with many other proto-oncogenes, MET is notable in that three different types of genomic alteration can lead to clinically relevant oncogenesis: amplification, mutation and fusion. All three of these states pose distinct diagnostic challenges in the clinic. Furthermore, these alterations can be identified in two major contexts — either as primary or secondary drivers of cancer growth. Primary MET dependence is exemplified by tumours that rely solely on overactive MET signalling to fuel their growth. Secondary MET dependence is characterized by reliance on another oncogenic driver (such as mutant EGFR) with concurrent dependence on MET^{2,3}. Secondary MET dependence can be de novo or acquired following the selective pressures of inhibitors of the primary driver oncoprotein4-7.

Identifying tumours that are oncogenically addicted to MET is crucial, owing to the clinical availability of multiple MET-directed therapeutics. A variety of anti-MET or anti-hepatocyte growth factor (HGF) antibodies/antibody-drug conjugates (ADCs) and multikinase or selective MET tyrosine kinase inhibitors (TKIs) have been tested. For example, the multikinase MET inhibitor crizotinib demonstrated activity in patients with *MET* exon 14-altered and *MET*-amplified lung cancers⁸. Likewise, selective next-generation MET TKIs, including tepotinib, capmatinib and savolitinib, demonstrated activity in the same MET-driven cancers^{9–11}. However, the identification of such tumours during cancer diagnosis has, thus far, been hindered by the lack of standardized cut-off points and testing methodology for MET-dependent states that are measured as a continuous variable (such as *MET* amplification) and by the inability of less-sophisticated assays to reliably capture both *MET* copy number gains and the wide variety of *MET* mutations and *MET* fusions that can lead to oncogenesis.

Thankfully, the field of MET-directed targeted therapy has seen incremental gains over the past few years owing to two factors: (1) the adoption of advanced diagnostic technologies that more effectively identify MET-dependent cancers, and (2) the contemporary strategy of molecular enrichment for patients with tumours of this phenotype in prospective trials investigating the efficacy of targeted therapies. In May of 2020, capmatinib received approval by the US FDA for the treatment of MET exon 14-altered lung cancers.

¹Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA. ²Department of Pathology, Memorial Sloan Kettering Cancer Center, New York,

⁵Weill Cornell Medical College, New York, NY, USA. [∞]e-mail: drilona@mskcc.org https://doi.org/10.1038/ s41571-020-0377-z

NY USA

Key points

- The degree of MET amplification is a continuous variable that can be measured using fluorescence in situ hybridization or next-generation sequencing. No consensus exists on the most appropriate diagnostic cut-off point for MET amplification.
- Patients with solid tumours harbouring high-level MET amplifications have a greater likelihood of benefit from single-agent or combination MET-targeted therapies than those with lower MET copy number gains.
- *MET* mutations are highly heterogeneous and can range from those that involve the *MET* kinase domain to those that result in *MET* exon 14 skipping.
- The activity of type I or type II MET tyrosine kinase inhibitors can substantially differ by *MET* mutation type.
- A wide variety of MET fusions have been identified, although the biology of these
 alterations and their implications for responses to MET-targeted therapies are not
 well characterized.
- MET overexpression in the absence of a known driver of MET dependence is a poor predictor of benefit from MET-targeted therapies.

This was a landmark approval of the first MET inhibitor for a genomically enriched population of MET-dependent cancers. In addition, tepotinib has been granted Breakthrough Therapy by the US FDA and fast-track designation by regulatory authorities in Japan^{12–14}.

As the landscape of diagnostic platforms and therapeutic repertoire for MET-dependent cancers has developed rapidly, in this review we summarize the current data on actionable *MET* alterations (such as *MET* amplification, mutations and fusions), their clinicopathological behaviour in various tumour types, contemporary diagnostic strategies and novel efforts to target MET. In addition, we discuss the pitfalls of relying on MET overexpression as the sole means of determining MET dependency.

MET amplifications

MET copy number gains can occur through polysomy or focal amplification. Polysomy occurs when chromosome 7, where MET is located, is inappropriately replicated by either isolated chromosomal or whole-genome duplication^{15,16}. The presence of multiple chromosomes thus results in an increase in the number of MET copies, albeit with parallel increases in the copy number of other oncogenes located on chromosome 7 (including EGFR, BRAF and CDK6). With amplification, MET undergoes regional or focal copy number gains without chromosome 7 duplication¹⁷ (FIG. 1). Thus, focal MET amplification is more likely to lead to oncogenic MET addiction than polysomy¹⁷. These findings parallel those from patients with breast cancer, in whom tumours harbouring HER2 copy number gains owing to polysomy have a similar phenotype to that of HER2-negative tumours¹⁸. MET amplification can lead to elevations in MET expression, receptor activation and ligand-independent downstream signalling in preclinical models^{19,20}.

Diagnosis

Various techniques can be used to detect *MET* copy number alterations. These include fluorescence in situ hybridization (FISH), quantitative real-time PCR (qRT-PCR), and next-generation sequencing (NGS)²¹. Furthermore, NGS can be used to analyse primary tumour material or circulating tumour DNA (ctDNA) obtained from plasma, or other bodily fluids. Unfortunately, the specific cut-off points that define *MET* amplification vary with each technique and/or assay.

Fluorescence in situ hybridization. FISH is a commonly used technique leveraging fluorophore-coupled DNA fragments to tag and detect genomic regions of interest, usually in formalin-fixed paraffin-embedded (FFPE) tissue sections. One or more fluorophores can be used during testing to differentiate between specific regions. Following exposure to labelled probes, targeted gene sequences of interest will fluoresce with the respective colours. The number of signals identified indicates the number of copies of the gene (FIG. 1). Signals from a predetermined number of tumour cells are manually counted, and the mean number of signals per malignant cell is calculated. Samples analysed using FISH are examined using fluorescence microscopy to enable signal detection. The differentiation of signals arising from malignant and nonmalignant cells is critical for accurate assessment of copy number. Interpretation in some samples can be challenging; certain morphologies can cause tissue sectioning artefacts and overlapping signals. Also, a common limitation of FISH with FFPE tissue sections is that a large proportion of cells might display one (or no) signal, consistent with signal dropout owing to truncation of the cell nucleus. Signals from these cells should not be reported. Such issues might reduce the total number of evaluable cells, particularly when present in very small samples. Also, owing to signal dropout, incorporation of appropriate controls is essential.

MET copy number increases can be defined using FISH in two main ways. The first method relies on determining gene copy number (GCN). Using the Cappuzzo criteria, MET amplification is defined as a mean of five or more copies of *MET* per cell (*MET* GCN \geq 5)²²⁻²⁴. Alternative definitions include a MET GCN of ≥ 6 (REF.²⁵) and a MET GCN of ≥ 15 (REFS^{26,27}). Unfortunately, simply determining GCN does not distinguish between selective MET amplifications and MET polysomy. In the second method, this limitation is overcome by calculating the ratio of MET to chromosome enumerating probe against chromosome 7 (CEP7); a separate fluorophore is used for the latter locus. Determination of this ratio adjusts for the number of chromosomes present and differentiates between selective MET amplifications and chromosomal duplication while also controlling for nuclear truncation such that cells with only a single CEP7 signal are not counted. A MET to CEP7 ratio ≥ 2.0 is typically used to define MET amplification^{23,24,28-32}. Others have categorized the degree of amplification into three groups using MET to CEP7 ratios: low $(\geq 1.8 \text{ to } \leq 2.2)$, intermediate $(\geq 2.2 \text{ to } < 5)$ and high $(\geq 5)^{17}$.

Next-generation sequencing. The methods used to determine *MET* copy number and the cut-off points for *MET* amplification vary across different NGS platforms^{33–35}. Similar to the criteria applied for FISH, no consensus exists on a single definition of *MET* amplification. Most methods for determining copy number variants by NGS use the sequencing read depth approach. This method assumes that the read depth signal is proportional to the

Box 1 | Pathophysiology of MET in cancer and the microenvironment

Under physiological conditions, hepatocyte growth factor (HGF), the ligand for MET, regulates the epithelial-to-mesenchymal transition, which is involved in tissue repair and embryogenesis²²³. In cancer, increased MET activity promotes tumour growth by providing anti-apoptotic and pro-migratory signals²²⁴. Furthermore, the *MET* gene can be regulated by several transcription factors, including hypoxia-inducible factor 1 (HIF1)²²⁵. The inhibition of angiogenesis results in hypoxic stress that leads to MET-mediated local invasion and distant metastasis in preclinical models^{226,227}.

The MET pathway can also regulate the tumour microenvironment. During tissue repair, upregulation of HGF and increased HGF–MET autocrine signalling promotes the development of an immunosuppressive microenvironment. This occurs by conversion of immunologically active macrophages (M1 phenotype) to a tumour-growth-stimulating (M2) phenotype and by induction of a tolerogenic phenotype in dendritic cells^{228,229}. MET inhibition can abrogate these effects while concurrently increasing the level of PD-L1 expression²³⁰. Thus, the combination of immunotherapy (for example, with an immune-checkpoint inhibitor) and a MET-targeted therapy is currently being explored in multiple ongoing trials (NCT03914300, NCT03866382, NCT03793166, NCT02819596 and NCT03742349).

number of copies of chromosomal segments in the specimen. Several bioinformatics tools have been developed for this approach³⁶⁻⁴¹; however, these have limited sensitivity and specificity. Some algorithms focus on specific target regions and use selected control samples (such as sequence-read replicates) for read depth comparison to improve sensitivity and specificity⁴². Other algorithms use a control (blood or samples of non-malignant tissue) from the same patient to further enhance sensitivity, facilitate the systematic identification of clonal and subclonal copy number events, and provide more accurate integer copy number calls that are adjusted for purity, ploidy and tumour heterogeneity, from clinical sequencing data^{34,43}. Notable advantages of NGS-based detection of copy number alterations, in addition to enabling the concurrent assessment of sequence variants across panels of hundreds of genes, include a high level of resolution and the ability to discern focal gene amplification from broad chromosomal gains.

Two types of NGS-based assays are used in the clinic: amplicon-based NGS and hybrid capture-based NGS. These techniques differ in terms of the method of DNA enrichment44. Briefly, hybrid capture-based NGS enables the more accurate assessment of copy number variations in MET and in other genes. This strength reflects the fact that hybrid capture enables the interrogation of broader regions of the genome as well as the identification and removal of sequence replicates, thereby enabling a more accurate determination of sequence coverage depth and overall copy number changes. By contrast, with the amplicon-based approach (in which the amplified regions are limited solely to stretches of DNA flanked by established primers) the genomic territory covered is limited, significant sequence bias can be introduced and sequence replicates cannot be removed, and thus the true sequence coverage depth is affected.

Several technical issues should be considered when using NGS. Firstly, the detection of copy number gains and/or losses is dependent on tumour purity and sample selection because non-malignant cells often become admixed with malignant cells during analysis^{33–35}. Secondly, the use of poor-quality DNA (from archived tumour samples) can lead to an increase in the level of noise and make the accurate analysis of copy number alterations more difficult. Thirdly, given the common use of read depth as a pivotal component for copy number assessment, the assay used must have both deep and uniform sequence coverage in order to successfully provide both sensitive and specific clinical results⁴⁵. Finally, investigations of the level of concordance between *MET* amplification quantified using NGS and using FISH have yet to be conducted. This lack of formal comparison makes the interpretation of NGS results more difficult, considering that FISH is currently the better studied method of detecting *MET* amplifications.

Other assays. NGS of plasma ctDNA samples enables the detection of MET amplifications. Calling methods for this technique are similar to those applied to NGS of tumour material^{46,47}. Obtaining samples of ctDNA is generally less invasive than biopsy sampling and has the potential to overcome tumour heterogeneity, which can confound the accuracy of NGS of tumour biopsy samples; however, the accuracy of plasma-based calls is dependent on the sensitivity and resolution of the analysis platform and is reliant on the tumour shedding a sufficient amount of genetic material⁴⁶⁻⁴⁹. As such, the findings of several studies have demonstrated that amplifications can be missed using this method^{46,50,51}. qRT-PCR of tumour material has also been used to detect *MET* amplifications, although the performance of this technique is not well characterized compared to that of FISH and NGS7,52-59. Again, the cut-off points used to define MET amplifications vary and no clear standardized definition has been proposed.

Clinical features

De novo MET amplifications. De novo MET amplifications are found across a wide variety of solid tumours. These amplifications are typically identified in <1-5% of non-small-cell lung cancers (NSCLCs)^{30,60-63}, <1-10% of gastric cancers^{24,26,28,64-66}, 2-4% of colorectal cancers (CRCs)67,68, 13% of type 1 papillary renal cell carcinomas (PRCCs) and 3% of type 2 PRCCs69, and at lower frequencies in oesophageal carcinomas and hepatocellular carcinomas (HCCs)23,29,70. No notable associations between MET amplification and smoking have been observed in patients with NSCLC60,71. MET amplifications can also be found in several cancer types in which these alterations have not been widely investigated, including glioblastoma, melanoma, gynaecological cancers and lymphoma, according to The Cancer Genome Atlas and the cBioPortal databases⁷²⁻⁷⁶. In many of these cancers, MET amplifications confer a poor prognosis^{22,24,26,28,30}. Importantly, the apparent frequency of MET amplifications varies between cohorts, and the true frequency of MET amplifications within a particular context is often challenging to determine. Variability in the frequency of MET amplifications found in different studies is unsurprising given the lack of consensus on the optimal assay or cut-off point to use.

The NSCLC literature provides evidence that, compared with lower-level *MET* amplifications, high-level *MET* amplifications are more likely to be indicative of oncogenic dependence on MET. In one series of patients

Fig. 1 | **Diagnosis of MET-amplified cancer. a** | The FISH-based determination of *MET* gene copy number (GCN) requires only a single probe (orange — locus specific identifier) against *MET*, which is quantified to determine GCN. This strategy does not enable differentiation between polysomy and true focal amplification because other regions of the chromosome are not interrogated and the absolute number of *MET*-containing chromosomes cannot be determined. By contrast, the addition of a probe targeting repetitive regions of the centromere (chromosome enumerating probe against chromosome 7 (CEP7), green) enables focal amplification to be confirmed. The resultant *MET* to CEP7 ratio thus enables differentiation between whole-genome duplications or polysomy, which have a low *MET* to CEP7 ratio (left, ratio of 1), and focal amplifications, which have a high *MET* to CEP7 ratio (right, ratio of 4; for simplicity, only the probes for one chromatid are depicted). **b** | Focal *MET* amplifications can be distinguished from broad chromosomal gains that include *MET* using nextgeneration sequencing (NGS). In the latter, adjacent genes such as *LINC01510* and *CAPZA2* are concurrently amplified. Focal *MET* amplifications are associated with a greater likelihood of dependence on MET.

with NSCLC, tumours that had high-level *MET* amplifications determined using FISH (*MET* to CEP7 ratio \geq 5) did not also harbour other oncogenic drivers (such as *EGFR* mutations or *ALK* fusions), whereas those with low (*MET* to CEP7 ratio \geq 1.8 to \leq 2.2) or intermediate (*MET* to CEP7 ratio \geq 2.2 to <5) levels of *MET* amplification were more likely to have concurrent alterations in other oncogenes (0% versus 52% and 50% of patients,

respectively)¹⁷. A separate study⁷⁷ suggested that focal *MET* amplifications quantified using NGS better represent a true oncogenic driver state than broad gains on chromosome 7 that include *MET*.

Acquired MET amplifications. Tumours harbouring de novo high-level MET amplifications are primarily dependent on MET signalling for growth, whereas those that are reliant on other oncogenes (such as mutant EGFR) can develop a secondary dependence on the MET pathway as a mechanism of resistance to targeted therapy². Depending on the cut-off point and assays used, acquired MET amplifications can be identified in 5-20% of patients with NSCLC with sensitizing EGFR mutations following resistance to first-generation, second-generation or third-generation EGFR TKIs^{3,6,78,79}. EGFR-mutant cell lines harbouring MET amplifications are dependent on MET-mediated bypass signalling via PI3K in the presence of the EGFR inhibitors gefitinib or erlotinib². MET-mediated activation of HER3 is needed to induce PI3K signalling in these cells^{2,55}. MET amplification has also been found to be a mechanism of resistance to ALK inhibitors in patients with ALK fusionpositive NSCLC⁸⁰. In addition, acquired MET amplifications have been identified in unselected patients with CRC receiving anti-EGFR monoclonal antibodies7 and in a patient with BRAF^{V600E}-mutant CRC who received combination therapy with EGFR and BRAF inhibitors⁸¹.

When *MET* amplification occurs as a secondary driver after initial therapy, it can occur in a subclonal population of tumour cells. Investigators using an NGS assay that interrogates nucleic acid sequences derived from a mixed population of tumour cells containing *MET*-amplified and non-amplified clones to identify acquired MET dependency need to bear in mind that the assay could underestimate the extent of *MET* amplification⁸². NGS-based assays might also fail to detect changes in *MET* copy number in this context. The use of complementary assays, such as FISH or single-cell sequencing, could be considered in situations in which NGS-based testing fails to reveal subclonal alterations in *MET* copy number.

Targeted therapy

De novo amplifications. PROFILE 1001 was one of the earliest studies to examine the activity of MET-targeted therapy in tumours stratified by the degree of MET amplification83. This phase I trial included an expansion cohort of patients with MET-amplified NSCLC in which the activity of crizotinib was examined in relation to the level of amplification: low (MET to CEP7 ratio \geq 1.8 to <2.2), intermediate (MET to CEP7 ratio \geq 2.2 to <5) and high (MET to CEP7 ratio \geq 5) amplification groups. The objective response rate (ORR) was highest (67%) in the high amplification group, compared with ORRs of 0% and 17% in the low and intermediate groups, respectively. The cut-off points of the intermediate and high amplification groups were subsequently modified to MET to CEP7 ratios of >2.2 to <4 and ≥4, respectively⁸⁴. In an update of PROFILE 1001 in which these cut-off points were used, the best overall outcomes consistently remained in the high amplification group (MET to CEP7 ratio \geq 4; ORR 40%, median progression-free survival (PFS) 6.7 months), compared with an ORR of 33% (median PFS 1.8 months) and ORR of 14% (median PFS 1.9 months) in the low (MET to CEP7 ratio \geq 1.8 to \leq 2.2) and intermediate (MET to CEP7 ratio >2.2 to <4) amplification groups, respectively (FIG. 2).

Data on the activity of selective MET TKIs in lung cancers with varying degrees of *MET* copy number

increase have emerged, with a focus on selection based on GCN (TABLE 1; see TABLE 2 for adverse events of the various agents as monotherapies). Capmatinib was investigated in a trial that classified NSCLCs according to *MET* GCN: GCN <4, GCN >4 to <6 and GCN \geq 6 (REF.⁸⁵). The ORR was highest (47%) in the group with a *MET* GCN \geq 6, compared with ORRs of 0% and 17% in the groups with GCN <4 and GCN \geq 4 to <6, respectively. The activity of savolitinib has been investigated in patients with *MET*-amplified PRCC⁴⁶. As opposed to the two prior studies, in which FISH was used^{84,85}, NGS was used in this study, with *MET* amplification defined as *MET* GCN \geq 6 (REF.⁸⁶). Patients with *MET*-amplified PRCC were more likely to respond (ORR 43%) than those with a GCN <6 (ORR 0%) (TABLE 1).

Finally, data from the AcSé study, in which patients received crizotinib, support the use of the *MET* to CEP7 ratio over *MET* GCN in evaluating MET dependency⁸⁷. The study demonstrated enrichment for responders in the group with high-level (*MET* to CEP7 ratio >2.0 cost) or intermediate-level (*MET* to CEP7 ratio >2.2 to <5) *MET*-amplified NSCLCs compared with the groups with low-level *MET* amplifications (*MET* to CEP7 ratio ≥1.8 to ≤2.2) or polysomy (*MET* GCN >6 and *MET* to CEP7 ratio <1.8).

Acquired resistance. In tumours with primary dependence on another oncogene and secondary dependence on MET, combination therapy targeting both the primary driver and MET can be effective. For example, the combination of an EGFR TKI with a MET TKI is clinically active in patients with EGFR-mutant NSCLC who acquire MET amplifications after disease progression on a prior EGFR TKI. In a cohort of patients with EGFR-mutant NSCLC with acquired MET copy number increases/amplifications (GCN ≥5 or MET to CEP7 ratio ≥2 by FISH or NGS) who received osimertinib and savolitinib, after progression on osimertinib⁸⁸, the ORR was 30%. In a trial in which patients with EGFR-mutant NSCLC who acquired MET copy number increases or amplifications (GCN \geq 5 or MET to CEP7 ratio \geq 2 on FISH) after progression on a first-generation or secondgeneration EGFR TKI received gefitinib plus tepotinib, the ORR was 67%89. Other agents, such as the EGFR-MET bispecific antibody JNJ-372, have shown promising activity in patients with EGFR-mutant cancers that have become resistant to EGFR TKIs90, and the activity of these drugs should be characterized further in tumours with acquired MET amplifications.

Interestingly, the activity of combination therapy also increases with increasing *MET* copy number (FIG. 2). A phase Ib/II study evaluated the activity of gefitinib and capmatinib in patients with *EGFR*-mutant NSCLC harbouring *MET* copy number increases who were stratified by *MET* GCN (GCN <4, GCN ≥4 to <6 and GCN ≥6)⁹¹. The ORR was highest (47%) in the GCN ≥6 group compared with ORRs of 12% and 22% in the GCN <4 and GCN ≥4 to <6 groups, respectively.

Taken together, higher levels of *MET* amplification predict an increased likelihood of benefit from MET-directed targeted therapies. This prognostic implication applies to both single-agent MET inhibitors

Fig. 2 | **Targeted therapies and response rates in patients with MET-amplified cancers.** Patients with cancers harbouring *MET* amplifications or increases in *MET* gene copy number (GCN) derive increased levels of benefit from MET-directed targeted therapies. Trials included patients with non-small-cell lung cancer (NSCLC) or papillary renal cell cancer (PRCC) and those with other solid tumours. Exact cut-off points for *MET* amplification or GCN varied between trials, although a cut-off *MET* to chromosome enumerating probe against chromosome 7 (CEP7) ratio \geq 4 or *MET* GCN of \geq 4 was chosen for consistency of data comparisons between trials that used fluorescence in situ hybridization (FISH) for diagnosis; patient-level data were reviewed to calculate response rates. A *MET* GCN cut-off of \geq 6 was applied to data from the only trial that utilized next-generation sequencing (NGS) for quantification of *MET* copy number. Objective response rates are shown for cancers that fall below these cut-off points (light red circles) and cancers that met or exceeded these cut-off points (dark red circles). The size of each circle represents the size of the subpopulation within each trial (with the smallest circle representing a trial including two patients), and each row represents a single trial. NR, not reported; PFS, progression-free survival. **MET* amplification determined using FISH; **MET* amplification determined using NGS.

in patients with de novo *MET*-amplified cancers and combination therapies that include a MET inhibitor in patients with cancers that develop *MET* amplifications as a mechanism of resistance to therapies targeting a non-*MET* primary oncogenic driver. Thus, the need for standardized definitions of *MET* amplification has substantial implications not only for diagnosis, but also for the identification of patients with cancers who are oncogenically addicted to MET and more likely to benefit from MET-directed targeted therapies.

MET mutations

Genomic diversity

Activating mutations can occur at a diverse range of positions within *MET* and include alterations involving the kinase domain, intronic splice sites that flank exon 14 and the extracellular domain.

Kinase domain mutations. MET mutations were first described in 1997 in patients with hereditary PRCC⁹². These germline mutations include V1092I, H1094R/Y, M1131T, V1188L, V1220I, M1250T and D1228H/N/V. *MET* kinase domain mutations increase kinase activity

and lead to phenotypic transformation or the formation of tumour foci in vitro when transfected into NIH 3T3 cells93. These alterations also induce tumour formation in mouse models in vivo93,94. Studies published 20 years later demonstrated that somatic MET mutations occur in sporadic PRCCs. These alterations are found in up to 15% of patients^{69,95,96}, predominantly in those with type 1 (17%) and less commonly in those with type 2 PRCC (2%)69,97. The spectrum of MET mutations in sporadic PRCCs includes V1092I, H1094L/R/Y, N1100Y, H1106D, M1131T, V1188L, L1195V, V1220I, D1228H/ N/V, Y1230A/C/D/H, Y1235D and M1250I/T and overlaps with the spectrum of germline MET mutations^{92,98,99} (FIG. 3). Interestingly, some of these mutations are less active than others, and concomitant MET amplification might be necessary to drive oncogenesis94,95,100. Activating MET kinase domain mutations have also been found in patients with other cancers, including those with HCC and head and neck cancer^{101,102}. The *MET*^{Y1235D} mutation can be found in up to 14% of patients with head and neck cancer¹⁰³.

In addition to occurring de novo, *MET* kinase domain mutations can also emerge as a mechanism of acquired

Table 1 Targeted	therapy outcom	es by MET copy number status			
Drug	Trial phase (n)	Amplification criteria	Assay used	MET subgroup	Outcomes
Solid tumours					
SAR125844 ²⁰²	Phase I (72)ª	MET to CEP7 ratio $\geq 2.0^{\text{f}}$ and MET GCN >4	FISH	All patients	ORR 17% (5/29)
Capmatinib ²¹²	Phase I (38) ^b	MET to CEP7 ratio \geq 2.0 or MET GCN \geq 5 ⁹	FISH	MET GCN <4	ORR 0% (0/22)
				MET GCN \geq 4 to <6	ORR 0% (0/6)
				MET GCN ≥6	ORR 0% (0/3)
AMG 337 ²¹³	Phase I (111)ª	MET to CEP7 ratio ≥2.0	FISH	All patients	ORR 10% (11/111); mDOR 202 days
		MET to CEP7 ratio MET to CEP7 ratio		MET to CEP7 ratio <4	ORR 0% (0/2)
			MET to CEP7 ratio \geq 4		ORR 60% (6/10)
Gastroesophageal	cancers				
AMG 337 ²¹⁴	Phase II (60) ^c	MET to CEP7 ratio ≥2.0	FISH	All patients	ORR 18% (8/45); mDOR 6.0 months
Foretinib ²¹⁵	Phase II (74)	MET to CEP7 ratio ≥2.0	FISH	All patients	ORR 0% (0/71); mDOR 1.7 months
				MET-amplified	ORR 0% (0/3)
Hepatocellular car	cinoma				
Capmatinib ²¹⁶	Phase II (30)	MET H-score \geq 50 or MET to CEP7 ratio >2.0 or	FISH	All patients	ORR 10% (3/30)
		METGCN≥5		$\begin{array}{l} \text{MET IHC score 3+ or 2+ in} \\ \geq 50\% \text{ of tumour cells and MET} \\ \text{GCN} \geq 5 \end{array}$	ORR 30% (3/10)
NSCLCs					
Crizotinib	Phase I (37) ⁸⁴	MET to CEP7 ratio \geq 1.8	FISH	All patientsORR 10% (3/3)MET IHC score $3 + \text{ or } 2 + \text{ in}$ $\geq 50\%$ of tumour cells and METORR 30% (3/1)Solve of tumour cells and METMET 30% (3/1)MET to CEP7 ratio ≥ 1.8 to ≤ 2.2 ORR 33% (1/3) mPFS 1.8 monMET to CEP7 ratio ≥ 2.2 to <4.0 ORR 14% (2/1) mPFS 1.9 monMET to CEP7 ratio ≥ 2.2 to <4.0 ORR 40% (8/2) mPFS 6.7 monAll patientsORR 31% (5/1) mPFS 5.0 monMET to CEP7 ratio ≥ 2.2 to <5.0 ORR 36% (5/1) mPFS 4.4 mon	ORR 33% (1/3); mPFS 1.8 months
				MET to CEP7 ratio >2.2 to <4.0	ORR 14% (2/14); mPFS 1.9 months
				MET to CEP7 ratio \geq 4.0	ORR 40% (8/20); mPFS 6.7 months
	Phase II ²¹⁷ (17) ^{a,e}	$ \sum_{\substack{\geq 50\% \text{ of tumour cells and MET}\\ GCN \geq 5 \ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	FISH	All patients	ORR 31% (5/16); mPFS 5.0 months
			ORR 36% (5/14); mPFS 4.4 months		
				MET to CEP7 ratio \geq 5.0	ORR 0% (0/2)
	Phase II ⁸⁷ (25) ^a	MET GCN \geq 6 and IHC 2+/3+	FISH	All patients	ORR 32% (8/25); mPFS 3.2 months
Capmatinib ⁸⁵	Phase I (44)	MET to CEP7 ratio \geq 2.0 or MET GCN \geq 5 ^{h,i}	FISH	All patients	ORR 20% (11/55)
				MET GCN <4	ORR 0% (0/17)
				$METGCN \ge 4 \text{ to } < 6$	ORR 17% (2/12)
				MET GCN ≥6	ORR 47% (7/15)
NSCLCs (EGFR-mu	tant)				
Savolitinib (300 mg daily) plus osimertinib ⁸⁸	Phase I (36)	Previously treated with first-generation/ second-generation EGFR TKI and T790M- negative; MET to CEP7 ratio \geq 2 or MET GCN \geq 5 by FISH or NGS ⁱ	FISH or NGS	All patients	ORR 64% (23/36); mPFS 9.1 months
Savolitinib (300 or 600 mg daily) plus osimertinib ⁸⁸	Phase I (51)	Previously treated with first-generation/ second-generation EGFR TKI and T790M negative; MET to CEP7 ratio \geq 2 or MET GCN \geq 5 by FISH or NGS ¹	FISH or NGS	All patients	ORR 65% (33/51); mPFS 9.0 months
Savolitinib (300 or 600 mg daily) plus osimertinib ⁸⁸	Phase I (18)	Previously treated with first-generation/ second-generation EGFR TKI and T790M-positive; MET to CEP7 ratio ≥ 2 or MET GCN ≥ 5 by FISH or NGS ⁱ	FISH or NGS	All patients	ORR 67% (12/18); mPFS 11.0 months
Savolitinib (300 or 600 mg daily) plus osimertinib ⁸⁸	Phase I (69)	Previously treated with third-generation EGFR TKI; MET to CEP7 ratio \geq 2 or MET GCN \geq 5 by FISH or NGS ⁱ	FISH or NGS	All patients	ORR 30% (21/69); mPFS 5.4 months

Table 1 (cont.) Targeted therapy outcomes by MET copy number status					
Drug	Trial phase (n)	Amplification criteria	Assay used	MET subgroup	Outcomes
NSCLCs (EGFR-mu	tant) (cont.)				
Tepotinib plus gefitinib ⁸⁹	Phase II (12)	Previously treated with first-generation/ second-generation EGFR TKI and T790M-negative; <i>MET</i> to CEP7 ratio ≥2 and/or <i>MET</i> GCN ≥5	FISH	All patients	ORR 67% (8/12); mPFS 16.6 months
Savolitinib plus gefitinib ²¹⁸	Phase I (44)	Previously treated with EGFR TKI; MET to CEP7 ratio ≥ 2 or MET GCN ≥ 5	FISH	All patients	ORR 25% (11/44)
Gefitinib plus capmatinib ⁹¹	Phase II (100)	GCN \geq 5 or IHC 2+/3+ in >50%; then GCN \geq 5 plus IHC 2+/3+; then GCN \geq 4 or IHC 3+; <i>MET</i>	FISH	All patients	ORR 29% (29/100); mPFS 5.5 months
		to CEP7 ratio ≥1.8		MET GCN <4	ORR 12% (5/41); mPFS 3.9 months
				$MET GCN \ge 4 \text{ to } < 6$	ORR 22% (4/18); mPFS 5.4 months
				MET GCN ≥6	ORR 47% (17/36); mPFS 5.5months
PRCC					
Savolitinib ⁸⁶	Phase II (79)ª	Focal MET GCN ≥6	NGS	All patients	10% (8/79)
				MET GCN <6 or not MET-driven	0% (0/32)
				MET GCN ≥6	43% (3/7)

FISH, fluorescence in situ hybridization; GCN, gene copy number; IHC, immunohistochemistry; mDOR, median duration of response; mPFS, median progressionfree survival; NGS, next-generation sequencing; NSCLC, non-small-cell lung cancer; ORR, objective response rate; PRCC, papillary renal cell carcinoma. *Available patient-level data with MET gene copy numbers or MET to CEP7 ratio and response results used to produce these results. ^bOnly data from patients receiving a stable dose in the dose expansion cohort used. ^cOnly patients from cohort 1 used. ^dNot MET-driven defined as no MET focal amplification, no MET kinase domain mutation, no HGF amplification and no chromosome 7 gain. ^eOne patient not RECIST evaluable. ^fMET positivity also defined as HC ≥50% of tumour cells with 2+/3+. ^gMET positivity also defined as H-score ≥150 or IHC ≥50% with 2+/3+ or H-score ≥50 for hepatocellular carcinoma and glioblastoma. ^hMET positivity also defined

as H-score \geq 150 or IHC \geq 50% with 2+/3+. MET positivity also defined as IHC \geq 50% 3+.

resistance to MET TKIs. In patients with NSCLC harbouring *MET* exon 14 mutations, *MET*^{Y1230C}, *MET*^{Y1230H}, *MET*^{D1228H} and *MET*^{D1228N} have all been found to mediate resistance to crizotinib by disrupting drug binding¹⁰⁴⁻¹⁰⁸. *MET* kinase domain mutations also emerge as a mechanism of resistance to the combination of an EGFR TKI and a MET TKI in patients with *EGFR*-mutant NSCLC with *MET* amplification-mediated resistance to prior single-agent EGFR TKI therapy¹⁰⁹.

MET exon 14 alterations. MET activation results in transphosphorylation of the Y1003 residue of the jux-tamembrane domain encoded by exon 14 within the MET kinase activation loop¹¹⁰. Phosphorylation of this residue mediates MET binding to c-Cbl E3 ligase, resulting in ubiquitylation and ultimately degradation of MET as part of an autoregulatory negative feedback loop¹¹¹. *MET* exon 14 alterations comprise a heterogeneous group of mutations that are all able to interfere with this process and result in increased and sustained MET signalling. The most common of these mutations are either base substitutions or indels, each occurring in around half of all patients^{112,113}.

MET exon 14 alterations were originally identified in small-cell lung cancers (SCLCs)¹¹⁴, although later studies revealed that these mutations are more commonly found in patients with NSCLC, with a prevalence of $3-4\%^{112,113,115,116}$. These alterations are further enriched in sarcomatoid carcinoma (occurring in 9-22% of patients), which is an aggressive subtype of NSCLC that can be highly resistant to chemotherapy¹¹⁷. *MET* exon 14 alterations occur at lower frequencies in other cancers, including gastric cancers and neuroblastomas^{112,118,119}. As well as being found de novo in various malignancies, *MET* exon 14 alterations have also been shown to mediate resistance to EGFR TKIs in patients with *EGFR*-mutant NSCLC^{5,120}. Among patients with NSCLC, a higher proportion of those with *MET* exon 14 skipping have a history of smoking compared with those harbouring other drivers, such as *ALK*, *ROS1* or *RET* fusions, although never-smokers still make up a substantial proportion of patients with *MET* exon 14 skipping alterations^{9,121,122}.

Most *MET* exon 14 alterations interfere with RNA splicing. In the wild-type state, the intronic regions of *MET* pre-mRNAs are removed by splicing before the transcript is translated into a protein. Mutations that occur in regions that flank *MET* exon 14 (such as the polypyrimidine tract or splice donor–acceptor regions) effectively disrupt the splicing process and result in exon 14 being skipped²¹. The loss of the encoded jux-tamembrane domain leads to the loss of the Y1003 ubiquitin-binding site on MET. Consequently, MET degradation is decreased and MET expression increases, driving oncogenesis^{123–125}. Most of these splice site mutations take the form of indels, with a wide range of sizes. Missense mutations that result in D1010 substitutions, such as D1010H/N/Y, are also able to disrupt splicing¹²⁶.

MET mutations that do not directly affect splicing can recapitulate a similar phenotype. For example, mutations that lead to Y1003 substitution (such as Y1003F/N/S) are able to interfere with c-Cbl E3 ligase binding¹²⁴. Similar to *MET* exon 14 RNA splice site mutations, Y1003 substitutions transform non-malignant cells, lead to increased levels of proliferation and promote tumour growth^{123,124}. Large deletions that encompass exon 14 result in loss of the juxtamembrane domain that carries Y1003 (REFS^{56,123,124}).

Other mutations. The semaphorin domain of the MET protein interacts with HGF (the ligand for MET) and is involved in dimerization leading to receptor activation¹²⁷. Mutations in this domain include E34K, H150Y, E168D, L269V, L299F, S323G, M362T, N375S and C385Y^{115,128–131} (FIG. 3). N375S is the most common of these alterations and occurs in 3–14% of NSCLCs¹³². Whether semaphorin domain mutations (particularly N375S) are activating or not remains a point of contention. N375S has been shown to participate in carcinogenesis through activation of downstream SRC and/or ERK1/2 signalling¹³³, although data have also shown that some semaphorin domain mutations decrease the HGF binding affinity of MET and are found in individuals without cancer^{132,134}.

Diagnosis

DNA sequencing. MET exon 14 alterations are highly heterogeneous; therefore, an effective NGS assay must be able to capture this wide variety of mutations¹¹². As mentioned previously, amplicon-based NGS and hybrid-based NGS are the two main types of assays used in the clinic. In amplicon-based NGS, genes of

Table 2 | Common adverse effects of MET-targeted therapies as monotherapies

Drug	Common treatment-related and/or emergent adverse events (% of patients)	Grade 3 or 4 adverse events (% of patients)
AMG 337 ²¹³	Headache (63), nausea (31), vomiting (19), fatigue (18), peripheral oedema (17)	Abdominal pain (5), headache (5), fatigue (5), hyponatraemia (5), vomiting (4), back pain (4), nausea (4)
Capmatinib ⁹	Peripheral oedema (42), nausea (33), increased serum creatinine (20), vomiting (19)	Peripheral oedema (8), fatigue (3), nausea (2), vomiting (2), decreased appetite (1), diarrhoea (0.3)
Crizotinib ⁸	Oedema (51)ª, vision disorder (45)ª, nausea (41), diarrhoea (39), vomiting (29)	Elevated serum transaminases (4), oedema (1), constipation (1), bradycardia (1)
Foretinib ²¹⁵	Fatigue (44), hypertension (35), nausea (27), diarrhoea (27), serum AST increased (23)	Serum AST increased (10), fatigue (6), serum GGT increased (6), serum ALT increased (4), hypertension (4), serum AP increased (2), rash (2)
SAR125844 ²⁰²	Asthenia/fatigue (58), nausea (32), abdominal pains (28), constipation (28), dyspnoea (28),	Serum ALT increased (7), anaemia (6), dyspnoea (6), asthenia/fatigue (4), abdominal pains (3), non-cardiac chest pain (3)
Savolitinib ²¹⁹	Nausea (39), fatigue (21), vomiting (17), peripheral oedema (17), serum AST increased (11), blood creatinine increased (11)	Serum AST increased (3), fatigue (2), anaemia (<1), decreased appetite (<1), hyperkalaemia (<1), peripheral oedema (<1), proteinuria (<1), rash (<1), vomiting (<1)
Tepotinib ¹⁰	Peripheral oedema (48), nausea (23), diarrhoea (21), serum creatinine increased (13), asthenia (9)	Peripheral oedema (8), serum ALT increased (2), serum amylase increased (2), asthenia (1), serum AST increased (1), diarrhoea (1)

ALT, alanine aminotransferase; AP, alkaline phosphatase; AST, aspartate aminotransferase; GGT, γ -glutamyl transferase. ^aClustered term.

interest are sequenced using primers that flank defined genomic regions¹³⁵. This approach can enable a shorter turnaround time and improved capture of targeted and difficult-to-sequence regions compared to hybrid-based approaches, although it is also more prone to sequencing errors in repetitive regions, bias and allelic dropout. Many MET exon 14 alterations, particularly indels that result in splicing defects, are located outside these amplified regions and might be missed^{136,137}. Furthermore, mutations such as large indels might involve a primer binding site and thus interfere with binding; this possibility likewise prevents the detection of these alterations using amplicon-based assays¹³⁵. Several studies have demonstrated that a substantial fraction of MET exon 14 alterations (>50% of alterations in certain scenarios) can be missed using amplicon-based NGS136,137.

By contrast, the use of hybrid capture-based NGS avoids some of the issues associated with amplicon-based NGS137. In hybrid-capture NGS, tumour DNA is sheared, captured using long oligonucleotide baits and then amplified. Sequence reads for a target have several different start and stop coordinates; therefore, duplicates can be identified and removed from the dataset, enabling the true extent of sequencing coverage to be determined. The challenges associated with sequencing repetitive sequences can be adjusted for through careful bait design and balancing. By tiling over appropriate intronic regions, hybrid capture-based NGS forestalls these primer binding issues and can enable the detection of mutations located further into the introns. The use of a capture-based approach enables corrections for some of the sequencing bias and allele dropout issues associated with amplicon-based NGS135. Hybrid capture-based NGS also outperforms amplicon-based NGS in calling missense mutations. Both platforms usually have a high depth of coverage of genes of interest, which ensures accuracy, although amplicon-based platforms are more commonly associated with false-positive or false-negative results, consequently affecting the threshold of sensitivity that the assay can provide.

RNA sequencing. DNA sequencing enables the detection of mutations located within exons that are predicted to result in MET exon 14 skipping, although DNA sequencing cannot confirm the absence of the exon itself, because modifications such as splicing occur post-translationally. As such, RNA sequencing platforms have the potential to complement DNA-based techniques such as NGS137. Given the diversity of MET exon 14 splice site alterations, interpreting whether or not certain mutations identified using NGS truly result in exon 14 skipping can be challenging. Such interpretations can be made based on the proximity to splice donor and/or acceptor regions, although this becomes more challenging with alterations located deeper into the introns. By contrast, RNA sequencing enables the direct identification of the loss of exon 14 transcription. Furthermore, the challenges associated with the need to sequence large introns are avoided with RNA-based sequencing, owing to the absence of introns in mRNA. However, RNA is less stable than DNA, which limits its shelf-life especially in preserved tissue¹³⁸. Furthermore,

Fig. 3 | **MET mutations.** The MET protein consists of the extracellular semaphorin domain in red and green, a plexin–semaphorin–integrin (PSI) domain in pink, four immunoglobulinlike regions in plexins and transcription factor (IPT) repeats in orange, a juxtamembrane domain (encoded by exon 14) in blue, and a kinase domain in green. **a** | *MET* exon 14 splice site alterations result in exon 14 exclusion. These splice variants lack a ubiquitinbinding site in the juxtamembrane domain, resulting in impaired MET degradation and increased MET signalling. **b** | Missense mutations located in the juxtamembrane domain-encoding region of *MET* prevent spliceosome binding in the *MET* pre-mRNA or modify the Y1003 ubiquitylation site in the MET protein. These ultimately recapitulate the biology of *MET* exon 14 splice site alterations. **c** | Mutations in the kinase domain lead to increased activation of the MET kinase and can be associated with conformational changes that favour the xDFG-out state. **d** | Other mutations can occur in the semaphorin domain, which contains the hepatocyte growth factor-binding site. The implications of semaphorin domain mutations for MET function are currently unclear.

> given the high level of variability of mRNA expression in non-malignant and tumour tissues and the challenges involved in interpreting these results, RNA sequencing is currently used as an adjunct to traditional sequencing methodologies, such as for confirming *MET* exon 14 skipping¹³⁹. In summary, whereas the effects of newly detected mutations on *MET* exon 14 expression can be

difficult to interpret using DNA-based platforms, RNA sequencing enables the direct determination of whether or not exon 14 has been transcribed.

Anchored multiplex PCR (AMP sequencing) is an RNA-based technique that can identify MET exon 14 alterations. Using this method, RNA is used as a template to generate complementary DNA (cDNA) from tumour material¹⁴⁰. Multiplex PCR enables the incorporation of molecular barcodes that enable the quantification of sequences and the correction of sequencing errors as the cDNA is sequenced and amplified. The loss of exon 14 is then identified in cDNA. In one study¹⁴¹, the utility of AMP RNA sequencing in identifying MET exon 14 alterations was examined in a total of 232 patients with NSCLC that were deemed 'driver-negative' by DNA-based hybrid-capture NGS. A total of 33 targetable alterations, including six MET exon 14 skipping alterations, were identified using AMP RNA sequencing that were not detected using DNA-based NGS. An analysis of the genomic sequences of the six alterations identified using RNA sequencing was then conducted, and novel MET exon 14 splice site alterations were detected after further manual review of data from five of the six patients¹³⁶. No MET mutation was detected in the remaining patient, suggesting that MET exon 14 skipping occurred by another mechanism.

Molecular counting, using the nCounter system, has also been used to identify *MET* exon 14 loss at the RNA level. This system uses probes to detect *MET* transcripts of interest, including a fluorescently tagged 5' reporter probe and a biotinylated 3' capture probe¹⁴². By contrast to AMP sequencing, molecular counting does not require the reverse transcription of RNA to cDNA and does not require amplification of the source material. Instead, target-specific colour-coded probes are used to highlight the sequences of interest and the colour intensities are quantified and tabulated using a digital analyser for image acquisition¹⁴². Further studies of this method are needed, particularly because the performance of molecular counting for the detection of *MET* exon 14 skipping has not been compared directly with that of AMP^{143,144}.

Targeted therapy

Kinase domain mutations. MET-directed targeted therapies are active against certain MET kinase domain mutations. However, the activity of the various MET TKIs against specific alterations is variable. Specifically, while type II MET inhibitors, such as cabozantinib and foretinib, have preclinical activity against several kinase domain mutations (such as D1228N, M1250T and H1094Y/L145), type I MET inhibitors, such as crizotinib, lack any substantial activity against tumours harbouring these alterations. As such, MET kinase domain mutations have emerged as mechanisms of resistance to crizotinib in patients with MET-amplified and MET exon 14-altered cancers. The ability of these mutations to switch the conformation of the MET kinase from an active (xDFG-in) to an inactive (xDFG-out) conformation is likely to contribute to crizotinib resistance because type I MET inhibitors preferentially bind to the active confirmation of MET kinase, while type II MET inhibitors bind to the inactive confirmation¹⁴⁶ (BOX 2).

Data from patients with tumours harbouring de novo MET kinase domain mutations are largely limited to those with PRCC. In a study involving patients with hereditary PRCCs harbouring germline MET mutations who received foretinib, the ORR was 50%¹⁴⁷. Data on patients who acquired MET kinase domain mutations as mechanisms of resistance to prior MET TKIs are currently limited to those with NSCLC^{104-106,108}. Patients were identified as having cancers that developed MET kinase domain mutations as mechanisms of resistance to the combination of an EGFR TKI and crizotinib (administered to patients with EGFR-mutant cancers with MET amplification-mediated resistance to a prior EGFR TKI)¹⁴⁸. In a case study, switching from crizotinib to the type II MET inhibitor cabozantinib (both in combination with osimertinib) on the emergence of a putative resistance mutation in MET (D1228N) resulted in the re-establishment of disease control.

MET exon 14 alterations. As opposed to kinase domain mutations that can alter the conformation of the MET kinase, MET exon 14 variants theoretically have a kinase domain that is similar to that of the wild-type form of MET¹¹¹. Thus, both type I and type II MET TKIs are able to inhibit such variants, and both types have shown preclinical activity in models of *MET* exon 14-altered cancers¹²⁶. The clinical activity of MET inhibition in *MET* exon 14-altered NSCLCs was originally established prospectively with crizotinib, a type Ia multikinase MET inhibitor⁸.

Investigators enrolled 69 patients with advancedstage *MET* exon 14-altered NSCLC into an expansion cohort of the phase I PROFILE 1001 study, which explored the efficacy of crizotinib. The median PFS duration was 7.3 months and, of the 65 patients with evaluable responses, the ORR was 32% (TABLE 3). These results supported the inclusion of crizotinib in the NCCN guidelines for this indication¹⁴⁹. These data also supported the FDA's decision to designate crizotinib as a Breakthrough Therapy for the treatment of patients with *MET* exon 14-altered NSCLC, following disease progression on platinum-containing chemotherapy, in 2018 (REFS^{150,151}).

Box 2 | Type 1 and type 2 MET inhibitors

Type I MET tyrosine kinase inhibitors (TKIs) target the ATP-binding pocket of the active form of MET²³¹. Type Ia agents, such as the multikinase ALK, ROS1 and the MET inhibitor crizotinib, interact with MET moieties such as the Y1230 residue, the hinge region and the solvent-front G1163 residue. Type Ib inhibitors tend to be more MET-selective agents that, in contrast to type Ia agents, do not interact with G1163 (REF.¹²⁶). Type Ib inhibitors include capmatinib, tepotinib, savolitinib and APL-101. Unsurprisingly, these have been demonstrated to overcome solvent-front substitutions in vitro (such as G1163E/R) that confer resistance to crizotinib.

Type II MET TKIs (cabozantinib, merestinib and glesatinib) are likewise ATP-competitive, but bind the ATP pocket in the inactive state by extending to a hydrophobic back pocket^{126,232,233}. Binding to this configuration enables these agents to act against MET kinase domain mutations that confer resistance to type Ia and type Ib inibitors^{126,234}, including D1228E/G/H/N and Y1230C/D/S/H/N. Conversely, the MET L1195V and MET F1200I/L mutations are associated with resistance to type II MET inhibitors^{126,232,233}. Thus, switching between type I and type II MET inhibitors might be an effective strategy in patients with MET-dependent cancers, depending on the specific resistance mutation that emerges.

Since the designation of crizotinib as a Breakthrough Therapy, newer agents, including the selective type Ib MET inhibitors capmatinib, tepotinib and savolitinib, have been tested in patients with MET exon 14-altered NSCLC⁹⁻¹¹ (TABLE 3). Notably, these selective agents are more potent inhibitors of MET than crizotinib¹²⁶. In the GEOMETRY trial⁹, the ORRs to capmatinib monotherapy in patients with treatment-naive or chemotherapy-treated MET exon 14-altered NSCLC were 68% and 41%, respectively. Capmatinib received line-agnostic approval by the US FDA for the treatment of MET exon 14-altered lung cancers based on this data set. Similarly, in the VISION trial, the ORR to tepotinib monotherapy in a cohort of 85 patients with advanced-stage MET exon 14-altered NSCLC was 44%10. In a phase II trial, the ORR to savolitinib in patients with pulmonary sarcomatoid carcinoma or other NSCLC subtypes harbouring MET exon 14 alterations was 55%¹¹. The durability of disease control and toxicities of these agents relative to those of crizotinib have not yet been well characterized.

Response rates to MET TKIs vary widely between cohorts; therefore, several investigators have attempted to identify subgroups of patients with *MET* exon 14-altered NSCLC who are either more or less likely to respond to therapy^{8,11}. Data from the PROFILE 1001 study indicate that response rates to crizotinib do not vary substantially by the location (splice acceptor versus donor site involvement) or type (InDel versus base substitution) of *MET* exon 14 alteration, or by the presence or absence of concurrent *MET* amplifications⁸ (TABLE 3). These observations were subsequently confirmed by data from studies involving selective MET inhibitors such as savolitinib¹¹.

On-target mechanisms of acquired resistance, such as *MET* amplifications and *MET* kinase domain mutations, have been identified in patients who initially derive benefit from MET-targeted therapies. The role of HGF in acquired resistance largely remains to be determined, although *HGF* amplifications have been detected in the setting of acquired resistance^{107,152}. Preclinical data supporting the role of these amplifications in *MET* exon 14-altered NSCLCs are currently not available, although HGF reduced the sensitivity to MET TKIs in a panel of *MET*-amplified human cancer cell lines and mouse xenografts¹⁵³.

MET fusions

Clinicopathological features

MET was originally identified as an oncogene after chemically transformed osteosarcoma cell lines were found to harbour the *TPR–MET* fusion¹⁵⁴. *MET* fusions were thereafter identified in patients with gastric cancer, thyroid carcinoma, PRCC, lung adenocarcinoma, HCC, glioma and sarcoma. The exact frequency of *MET* fusions is poorly defined, although they are enriched in gliomas, occurring in ~12% of patients^{155,156}. Beyond *TPR–MET*, multiple other *MET* fusions have since been identified^{72,73,116,155,157–168} (FIG. 4). These fusions can occur through intrachromosomal fusions (such as *PTPRZ1– MET*, *CLIP2–MET*, *CAPZA2–MET* and *ST7–MET*) or interchromosomal fusions (such as *KIF5B–MET*,

	Table 3 Targeted therapy in MET exon 14-altered lung cancers					
	Drug	Outcomes by patient characteristics	Outcomes by alteration type	Outcomes by amplification status		
	Type la tyrosine-kinase inhibitors					
	Crizotinib ⁸	Overall: ORR 32% (21/65), mPFS 7.3 months	Indels: ORR 0% (0/4). Point mutations: ORR 36% (12/33). Splice acceptor site mutations: ORR 31% (5/16). Splice donor site mutations: ORR 32% (12/37)	Concurrent <i>MET</i> amplification: ORR 50% (1/2). Non- <i>MET</i> amplified: ORR NR		
	Type Ib tyrosine-kinase inhibitors					
	Capmatinib ⁹	Treatment naive: ORR 68% (19/28), mPFS 9.7 months. Pretreated: ORR 41% (28/69), mPFS 5.4 months	NR	NR		
	Tepotinib ¹⁰	Overall: ORR NR, mPFS 10.8 months. Treatment-naive: ORR 44% (8/18), mPFS NR. Pretreated: ORR 45% (15/33), mPFS NR	NR	NR		
	Savolitinib ¹¹	Overall: ORR 55% (17/31)	Indels: ORR 43% (6/14). Point mutations: ORR 59% (10/17). Splice acceptor site mutation: ORR 42% (5/12). Splice donor site alteration: ORR 58% (11/19)	Concurrent <i>MET</i> amplification: ORR 100% (5/5). Non- <i>MET</i> -amplified ORR 35% (8/23)		

Indel, insertion or deletion; mPFS, median progression-free survival; NR, not reported; ORR, objective response rate.

TPR–MET, *GPRC5C–MET* and *CD47–MET*)¹⁶², each type accounting for approximately half of all *MET* fusions. In paediatric patients with glioblastoma, intrachromosomal fusions seem to be more common and most frequently involve *PTPRZ1* (REF.¹⁵⁵). *MET* fusions can arise from either paracentric (not including the centromere) or pericentric (including the centromere) inversions, although the latter seems to be more frequent.

MET fusions often include exon 15 of this gene, which encodes the kinase domain^{155,157,158,160,161,167,169,170}, and many of the upstream partner genes encode dimerization domains, resulting in ligand-independent constitutive MET activation. Furthermore, some fusion events (such as *TPR-MET*) have been found to exclude exon 14, thus enabling a mechanism of MET activation similar to that of *MET* exon 14 skipping¹⁶⁹. Interestingly, fusions that include exon 14 (such as *KIF5B-MET* and *PTPRZ-MET*) seem to be less oncogenic than fusions that exclude exon 14 (REF.¹⁵⁵). In *PTPRZ-MET* fusions, the *PTPRZ* promoter is typically fused to the full-length *MET* gene, including the MET dimerization domain on exon 2; this fusion results in both MET overexpression and increased activation of downstream signalling^{155,171}.

Diagnosis and targeted therapy

A number of analytical techniques can enable the detection of *MET* fusions, including FISH, RT-PCR and NGS^{155,157,172,173}. However, none of these platforms has been well studied in this application, and complex and/or novel *MET* fusions and rearrangements can be particularly difficult to detect using FISH¹⁷⁴. In this section, we therefore focus primarily on NGS, which is the increasingly preferred clinical diagnostic approach to identifying genetic alterations. DNA-based NGS enables the reliable detection of a wide variety of *MET* fusions, although several general features of these fusions make

it difficult for even DNA-based hybrid capture NGS to capture all events¹⁷⁵. Firstly, repetitive intronic DNA sequences can occur at fusion breakpoints. These repeats can also occur in other areas of the genome and, because hybrid capture produces short reads, using such sequences as baits can result in reads that are not mappable to the reference genome³⁵. As a result, these baits are excluded from contemporary assays, thus increasing the chance of missing genomic fusion breakpoints. Secondly, the introns of select fusion partners can be prohibitively long, which makes tiling of these sequences both challenging and impractical¹⁴¹. Thirdly, DNA-based NGS is limited in its ability to detect novel gene fusion partners^{174,176}. As discussed earlier, these issues can be avoided using RNA-based AMP NGS or whole-transcriptome profiling141,176,177. In an analysis of samples from patients with apparently driver-negative NSCLCs by DNA-based NGS, RNA-based AMP NGS revealed actionable gene fusions in 12% (27) of 232 patients¹⁴¹. This observation suggests that AMP can complement DNA-based NGS in the detection of MET fusions, especially in settings in which no driver alteration is found.

The utility of MET-directed targeted therapies in patients with *MET* fusion-positive cancers has, thus far, been almost ignored. MET TKIs induce apoptosis in *TPR-MET*-transformed cell lines¹⁷⁸, and isolated responses to crizotinib have been described in case reports relating to patients with *MET* fusion-positive lung adenocarcinoma or glioma^{155,162,179}. One patient was included in the *MET* exon 14 cohort of PROFILE 1001 because the patient's NSCLC harboured a *MET* fusion that resulted in exon 14 skipping⁸; a confirmed objective response was achieved with crizotinib in this patient. Multiple clinical trials designed to evaluate the efficacy of MET TKIs, including trials in patients with tumours harbouring *MET* fusions, are currently ongoing

(NCT02978261, NCT03993873 and NCT01639508). However, the activity of a MET TKI in a large homogeneous cohort of patients with *MET* fusion-positive cancers has yet to be reported.

MET overexpression

The role of MET expression in oncogenesis should be considered in a number of contexts. Firstly, MET can be transcriptionally induced in cancer cells in the setting of hypoxia and/or inflammation, which can activate proliferation, decrease apoptosis and promote migration. Tumours can thus potentially be reliant on MET signalling even in the absence of a genomic driver such as MET amplification, mutation or fusion. Such states could theoretically be addressed using MET-directed targeted therapies, although the clinical experience with monoclonal antibodies in this setting has been disappointing to date^{180,181}, and MET TKIs have shown little activity in patients with MET-overexpressing tumours85 (TABLE 4). Thankfully, newer MET-targeting strategies such as biparatopic antibodies (which target two distinct epitopes on the same target protein), combinations of antibodies and ADCs are being explored. Secondly, MET can be overexpressed in cancers that harbour an activating genomic signature, including those with primary and/or secondary MET amplifications or MET exon 14 alterations.

Diagnosis

Immunohistochemistry. A number of anti-MET antibodies have been used for the immunohistochemical (IHC) detection of this protein. These include monoclonal antibodies (such as SP44, cMET and MET4), polyclonal antibodies (such as polyclonal MET AF276) and antibodies to phosphorylated MET (such as pMET Y1349)¹⁸²⁻¹⁸⁶. Of these antibodies, SP44, a rabbit monoclonal anti-total MET antibody clone, is commonly used. The comparative performance of these antibodies is currently unknown. The extent and intensity of IHC staining as assessed by a pathologist provides a semiquantitative indication of MET protein expression. Various scoring systems have been used to define both MET expression and overexpression by IHC^{60,184,187}. The degree of expression is typically quantified as a staining score on a scale of 0 to 3+, corresponding to negative (0), weak (1+), moderate (2+) or strong (3+) staining¹⁸⁴. A staining score of 1+ indicates MET expression. A staining score of 2+ (MET overexpression) in at least 50% of the cells is a commonly used cut-off point for MET positivity in clinical trials¹⁸⁴. Another scoring system, the H-score, involves multiplying the percentages of cells with a staining score of 1+, 2+ or 3+ by their staining intensity score188. H-scores range from 0 to 300; a score of ≥200 usually denotes overexpression, although specific cut-off scores vary between studies^{60,189}. Investigators

Fig. 4 | **MET fusions.** A wide variety of *MET* fusions have been identified. These fusions can result in constitutive MET activation in a variety of ways. **a** | The 5' upstream partners CLIP2, TFG, KIF5B, BAIAP2L1, C8orf34 and TPR and others all have coiled-coil domains that promote chimeric oncoprotein dimerization. **b** | Other domains (such as the MLN64 N-terminal domain of STARD3NL) can mediate alternative methods of homodimerization. **c** | The 3' *MET*-derived region typically includes the kinase domain; however, fusions that include the juxtamembrane domain or larger regions of *MET* have also been identified. Interestingly, certain fusions, such as *TPR–MET*, result in the exclusion of exon 14 of *MET*; the biology of tumours harbouring such fusions is thus thought to be similar to that of *MET* exon 14-altered cancers. The genomic locations of *MET* breakpoints are noted in the figure. IPT, immunoglobulin-like regions in plexins and transcription factor; PSI, plexin–semaphorin–integrin; SEMA, semaphorin.

Table 4 Targeted therapy outcomes by MET expression status						
Intervention (randomization)	Setting	Phase (n)	MET IHC status	Outcomes by MET status	Ref.	
AF276 polyclonal antibody						
Rilotumumab (15 mg/kg) vs rilotumumab (7.5 mg/kg) vs placebo (1:1:1)ª	CRPC	ll (144)	73 patients had tumours evaluable for MET expression; 53% were classified as MET ^{high} and 47% MET ^{low}	mPFS 3.6 months vs 2.9 months in patients with MET ^{low} vs MET ^{high} tumours receiving rilotumumab (HR 2.27, 95% Cl 1.10–4.71; P =0.027)	182	
MET4 monoclonal antibody						
Rilotumumab (15 mg/kg) vs rilotumab (7.5 mg/kg) vs placebo (1:1:1) ^b	Advanced-stage gastric/GEJ cancer	ll (121)	91 patients had tumours evaluable for MET expression; 68% were classified as MET ⁺ and 36% MET ⁻	mPFS 4.4 months vs 6.8 months; mOS 10.6 vs 11.1 months; ORR 50% vs 32% in patients with MET ⁺ vs MET ⁻ tumours receiving rilotumumab	183	
SP44 monoclonal antibody						
Tivantinib (360 mg or 240 mg) vs placebo (2:1)	Advanced-stage HCC	ll (107)	77 patients had tumours evaluable for MET expression; 48% were classified as MET ^{high}	mTTP 2.7 months vs 1.5 months; mOS 7.2 months vs 5.0 months in patients with MET ^{high} vs MET ^{low} tumours receiving tivantinib	203	
Tivantinib vs placebo (1:1)°	Metastatic CRC	ll (117)	67 patients had tumours evaluable for MET expression; 57% were classified as MET ^{high}	ORR 44% vs 31%; mPFS 7.9 months vs 11.0 months; OS 22.3 months vs NR in patients with MET ^{high} vs MET ^{low} tumours receiving tivantinib	220	
Onartuzumab + paclitaxel vs onartuzumab + bevacizumab vs bevacizumab + paclitaxel ^d (1:1:1)	Metastatic TNBC	ll (185)	179 patients had tumours evaluable for MET expression; 12% were classified as MET IHC 2+ or 3+	mPFS 10.3 months vs 5.7 months in patients with MET ^{high} vs MET ^{low} tumours	221	
Onartuzumab + erlotinib (single arm)	Advanced-stage EGFR-mutant NSCLC	ll (61)	61 patients had a MET IHC score of either 2+ (53) or 3+ (8)	IHC 2+: ORR 66% mPFS 8.5 months. IHC3+: ORR 88%, mPFS 4.4 months	222	
Onartuzumab + erlotinib vs placebo + erlotinib (1:1)	Recurrent NSCLC	ll (137)	128 patients had tumours evaluable for MET expression; 52% were classified as either MET IHC 2+ or 3+	IHC 2+: mPFS 4.1 months vs 1.6 months, mOS NR vs 6.5 months in patients receiving onartuzumab + erlotinib vs placebo + erlotinib. IHC 3+: mPFS 2.7 months vs 1.4 months, mOS 11.1 vs 2.9 months in patients receiving onartuzumab + erlotinib vs placebo + erlotinib	184	
Unknown antibody						
Capmatinib	NSCLC	l (52)	52 patients had tumours evaluable for MET expression; 94% were classified as either MET IHC 2+ or 3+	IHC 2+: ORR 17%. IHC 3+: ORR 24%	85	

CRC, colorectal cancer; CRPC, castration-resistant prostate cancer; GEJ, gastroesophageal junction; HCC, hepatocellular carcinoma; IHC, immunohistochemistry; NSCLC, non-small-cell lung cancer; NR, not reported; mOS, median overall survival; mPFS, median progression-free survival; mTTP, median time to progression; ORR, objective response rate; OS, overall survival; TNBC, triple-negative breast cancer. *All patients received mitoxantrone and prednisone. *All patients received epirubicin, cisplatin and capecitabine. *All patients received cetuximab plus irinotecan. *All patients received paclitaxel.

have also used the median H-score (comprising the range of H-scores obtained from samples exclusively analysed within a given study) as the cut-off point for overexpression; this approach makes standardization and generalization across studies difficult.

Mass spectrometry. Selected reaction monitoring mass spectrometry (SRM–MS) involves the serial ionization and fragmentation of tumour proteins in order to quantify the molecular mass of the MET protein per sample (in attomoles per microgram). SRM–MS enables the quantification of MET in formalin-fixed, paraffin-embedded tissue slices with robust reproducibility reported, even in samples that have been fixed for ≥ 1 year¹⁹⁰. In comparison with IHC, SRM–MS is less vulnerable to interobserver bias and might enable the detection of lower levels of protein expression. However, SRM–MS cannot differentiate between proteins expressed in

tumour and non-malignant tissues, and therefore MET quantification might be influenced by admixed stroma and/or inflammatory infiltrates. Furthermore, SRM–MS is more technically demanding and more expensive than IHC, meaning that this approach is currently less widely adopted. IHC is currently routinely used in diagnostic pathology laboratories, while the use of SRM–MS has remained largely investigational.

Screening

The presence of MET overexpression has been investigated as a method of screening for patients with activating alterations in *MET*. Unfortunately, MET overexpression is not a reliable indicator of *MET* amplifications or *MET* exon 14 alterations, and limited data are currently available on the detection of *MET* fusions⁷¹. This lack of a predictable association contrasts with the situation in patients with *ALK*-rearranged NSCLC, in which ALK overexpression on IHC is strongly correlated with the presence of an *ALK* rearrangement detected by FISH¹⁹¹.

MET amplification. As mentioned, MET overexpression determined using IHC does not strongly correlate with MET amplification¹⁹²⁻¹⁹⁴. This lack of a correlation might reflect the inclusion of samples featuring lower levels of MET amplification that do not result in substantial protein expression, or the possibility that expression is variably modulated by post-transcriptional and/or post-translational factors. In a series from the Lung Cancer Mutation Consortium (LCMC), MET amplification (defined as a MET to CEP7 ratio of >2.2) was only detected in one of 74 patients (1%) with MET overexpression (defined as an H-score of ≥ 200)¹⁹⁵. In a small study of samples from patients with gastric cancer (n=31), a MET IHC H-score of 150 had a 75% sensitivity and 78% specificity for the detection of MET amplification (defined as a MET to CEP7 ratio of >2.0 and a GCN of >4.0)¹⁹⁰. All of the above studies used FISH to quantify *MET* amplification; limited data are available from NGS in this context.

MET mutation. Interestingly, although MET exon 14altered NSCLCs are expected to overexpress MET, not all of these tumours are MET-positive on IHC or SRM-MS^{107,122,196}. In a cohort of 25 patients with MET exon 14-altered NSCLC, only 16 (64%) were MET-positive on IHC (2+ and 3+), and about one third were found not to express MET on SRM-MS196. Similar to the scenario with MET-amplified cancers, the expression of MET exon 14 variants might be modulated by posttranscriptional and/or post-translational factors. In the previously discussed LCMC series, MET exon 14 alterations were only detected in two of 74 patients (3%) with MET overexpression (H-score ≥ 200)¹⁹⁵. Other reports indicate that the sensitivity and specificity of MET overexpression determined using IHC as an indicator of MET exon 14 alterations is variable. For example, a 90% sensitivity and 47% specificity for IHC in predicting MET exon 14 alterations was found in one cohort of patients with NSCLC197, and a 20% sensitivity and 83% specificity in patients with sarcomatoid lung carcinoma¹⁸⁹. IHC has not routinely been explored as a screening tool for other MET mutations (such as kinase domain mutations) that do not result in exon 14 alterations.

Targeted therapy

Viewed in isolation, MET overexpression is not consistently predictive of benefit from MET-directed therapies. Reasons for this lack of benefit include the challenge of defining expression versus overexpression for a continuous variable and the possibility that overexpression is not equivalent to a MET-dependent state. Many cancers overexpress MET when analysed using IHC, although the frequency of overexpression is variable and dependent on the cut-off point used. For example, 24–66% of NSCLCs^{193,197} and 28–63% of gastric cancers^{28,64,198} have been described as *MET*-positive in various studies. Multiple therapeutic anti-MET antibodies (such as onartuzumab and emibetuzumab)^{199,200}, anti-HGF antibodies (ficlatuzumab and rilotumumab)187,201 and TKIs (crizotinib, cabozantinib, tivantinib, SAR125844 and tepotinib)²⁰²⁻²⁰⁵ have been tested in clinical trials. The overall activity of these drugs as monotherapies for patients with MET-overexpressing cancers is low (TABLE 4). For example, in a phase III trial involving patients with MET-overexpressing HCC, no significant difference was observed in the median overall survival (OS) durations between patients who received tivantinib and those who received placebo (8.4 months and 9.1 months, respectively; P = 0.81)²⁰⁶. Tepotinib resulted in a short median PFS duration of 2.8 months in the same setting, and the extent of MET IHC positivity did not select for improved activity²⁰⁷. Owing to the limited therapeutic successes achieved with antibody-based therapies, many drug development programmes sought to combine these therapies with chemotherapy, or EGFR-directed targeted therapies. The latter strategy was chosen given the preclinical synergy of this combination and the identification of secondary MET dependence following EGFR TKI resistance². Unfortunately, although certain phase II trials seemed promising (with improvements in PFS and OS)²⁰⁸, subsequent confirmatory phase III trials failed to reveal any benefit in patients with MET-overexpressing cancers (TABLE 4; see Supplementary Table 1), and the level of MET expression did not correlate with increased clinical benefit¹⁸¹. Additionally, patients with MET-overexpressing cancers on IHC were equally responsive to MET-directed therapies and placebo (Supplementary Table 1).

New anti-MET antibody-based strategies have thus been explored. These include mixtures of antibodies directed against different epitopes of the MET protein (such as Sym015) that have shown preclinical activity against MET-overexpressing and MET exon 14-altered cell lines¹⁸⁰. MET-targeted ADCs have also been explored. These drugs have the advantage of binding to and targeting MET-expressing cancer cells regardless of the level of MET dependence, and lower levels of MET expression might be sufficient for payload delivery. As an example, a study investigating the mechanism of action of the ADC telisotuzumab vedotin did not find a correlation between the level of MET expression and the degree of therapeutic benefit in a variety of solid tumours^{209,210}. Importantly, MET can also be expressed on non-malignant lung tissues²¹¹; therefore, pulmonary toxicities might be an issue with this type of therapy.

MET expression is a poor predictor of benefit from MET-targeted therapies in the absence of evidence of a genomic correlate of MET dependence and, therefore, the predictive nature of MET expression is being recontextualized in order to better identify cancers that are oncogenically addicted to MET. In one study involving patients with *MET* exon 14-altered NSCLC, MET expression was surprisingly heterogeneous in that 31% of cancers (5/16) did not have MET protein detectable by SRM–MS¹⁰⁷. In addition, the ORR to crizotinib was higher among tumours with detectable MET expression by SRM–MS (55% of tumours, 6/11) than among tumours that did not express MET (0%, 0/5). These observations suggest that, in the correct context, prospectively identifying MET expression could maximize

the level of benefit derived with MET-directed targeted therapies. The relationship between MET expression and *MET* amplification is currently not well defined; this should be explored prospectively in ongoing trials involving MET-directed therapies (TABLE 4).

Conclusions

The process of identifying patients with MET-dependent cancers is complex. From a diagnostic perspective, clinically meaningful cut-off points need to be standardized for continuous variables including the level of *MET* amplification or MET expression before these features can be used to guide treatment-related decision making. The migration of diagnostics towards the use of more

comprehensive and technically sophisticated assays is likely to be required to maximize the likelihood of detecting *MET* amplifications, mutations and/or fusions. Assays such as NGS should be considered for the detection of these alterations in both tumour biopsy and plasma samples and ideally in both DNA and RNA. The effective detection of MET-dependent cancers is crucial given that MET-directed targeted therapy is active in many of these cancers. Importantly, the level of activity of these therapies can be modulated by the type of alteration identified and the degree of oncogenic addiction to MET signalling.

Published online: 08 June 2020

- Bradley, C. A. et al. Targeting c-MET in gastrointestinal tumours: rationale, opportunities and challenges. *Nat. Rev. Clin. Oncol.* 14, 562–576 (2017).
- Engelman, J. A. et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. *Science* **316**, 1039–1043 (2007).
- Yu, H. A. et al. Concurrent alterations in EGFR-mutant lung cancers associated with resistance to EGFR kinase inhibitors and characterization of MTOR as a mediator of resistance. *Clin. Cancer Res.* 24, 3108–3118 (2018).
- Lai, G. G. Y. et al. Clonal MET amplification as a determinant of tyrosine kinase inhibitor resistance in epidermal growth factor receptor-mutant non-smallcell lung cancer. J. Clin. Oncol. 37, 876–884 (2019).
- cell lung cancer. J. Clin. Oncol. 37, 876–884 (2019).
 Schoenfeld, A. J. et al. Tumor analyses reveal squamous transformation and off-target alterations as early resistance mechanisms to first-line osimertinib in EGFR-mutant lung cancer. Clin. Cancer Res. https:// doi.org/10.1158/1078-0432.CCR-19-3563 (2020).
- Oxnard, G. R. et al. Assessment of resistance mechanisms and clinical implications in patients with EGFR T790M-positive lung cancer and acquired resistance to osimertinib. *JAMA Oncol.* 4, 1527–1534 (2018).
- Bardelli, A. et al. Amplification of the MET receptor drives resistance to anti-EGFR therapies in colorectal cancer. *Cancer Discov.* 3, 658–673 (2013).
- Drilon, A. et al. Antitumor activity of crizotinib in lung cancers harboring a MET exon 14 alteration. *Nat. Med.* 26, 47–51 (2020).
- Wolf, J. et al. Capmatinib (INC280) in MET∆ex 14-mutated advanced non-small cell lung cancer (NSCLC): efficacy data from the phase II GEOMETRY mono-1 study. J. Clin. Oncol. 37, 9004–9004 (2019).
- Paik, P. K. et al. Phase II study of tepotinib in NSCLC patients with METex14 mutations. J. Clin. Oncol. 37, 9005–9005 (2019).
- Lu, S. et al. Preliminary efficacy and safety results of savolitinib treating patients with pulmonary sarcomatoid carcinoma (PSC) and other types of non-small cell lung cancer (NSCLC) harboring MET exon 14 skipping mutations [abstract]. *Cancer Res.* 79 (Suppl. 13), CT031 (2019).
- Merck. Merck KGaA, Darmstadt, Germany, Announces FDA Breakthrough Therapy Designation for Investigational Therapy Tepotinib in Patients with Metastatic NSCLC with METex14 Skipping Alterations Merck KGaA https://www.emdgroup.com/en/news/ tepotinib-breakthrough-therapy-designation-111-09-2019.html (2019).
- Merck. Merck KGaA, Darmstadt, Germany, Receives Fast-Track Designation for Tepotinib in Non-Small Cell Lung Cancer in Japan Merck KGaA https://www. emdgroup.com/en/news/fast-track-designationtepotinib-27-03-2018.html (2018).
- 14. Novartis External Global Communications. Novartis investigational lung cancer therapy capmatinib (INC280) granted FDA Breakthrough Therapy Designation for patients with MET-mutated advanced non-small cell lung cancer *Novartis* https://www. novartis.com/news/media-releases/novartisinvestigational-lung-cancer-therapy-capmatinib-inc280granted-fda-breakthrough-therapy-designationpatients-met-mutated-advanced-non-small-cell-lung (2019)
- 15. Žack, T. I. et al. Pan-cancer patterns of somatic copy number alteration. *Nat. Genet.* **45**, 1134–1140 (2013).

- Reams, A. B. & Roth, J. R. Mechanisms of gene duplication and amplification. *Cold Spring Harb. Perspect. Biol.* 7, a016592 (2015).
- Noonan, S. A. et al. Identifying the appropriate FISH criteria for defining MET copy number-driven lung adenocarcinoma through oncogene overlap analysis. *J. Thorac. Oncol.* 11, 1293–1304 (2016).
- Vanden Bempt, I. et al. Polysomy 17 in breast cancer: clinicopathologic significance and impact on HER-2 testing. J. Clin. Oncol. 26, 4869–4874 (2008).
- Smolen, G. A. et al. Amplification of MET may identify a subset of cancers with extreme sensitivity to the selective tyrosine kinase inhibitor PHA-665752. *Proc. Natl Acad. Sci. USA* 103, 2316–2321 (2006).
- Lutterbach, B. et al. Lung cancer cell lines harboring MET gene amplification are dependent on Met for growth and survival. *Cancer Res.* 67, 2081–2088 (2007).
- Drilon, A., Cappuzzo, F., Ou, S. I. & Camidge, D. R. Targeting MET in lung cancer: will expectations finally be MET? *J. Thorac. Oncol.* 12, 15–26 (2017).
- Cappuzzo, F. et al. Increased MET gene copy number negatively affects survival of surgically resected non-small-cell lung cancer patients. J. Clin. Oncol. 27, 1667–1674 (2009).
- Kato, H. et al. Gene amplification of EGFR, HER2, FGFR2 and MET in esophageal squamous cell carcinoma. Int. J. Oncol. 42, 1151–1158 (2013).
- Graziano, F. et al. Genetic activation of the MET pathway and prognosis of patients with high-risk, radically resected gastric cancer. J. Clin. Oncol. 29, 4789–4795 (2011).
- Yin, X. et al. Relationships between chromosome 7 gain, MET gene copy number increase and MET protein overexpression in Chinese papillary renal cell carcinoma patients. *PLoS One* 10, e0143468 (2015).
- Lee, H. E. et al. MET in gastric carcinomas: comparison between protein expression and gene copy number and impact on clinical outcome. Br. J. Cancer 107, 325–333 (2012).
- Nagatsuma, A. K. et al. Expression profiles of HER2, EGFR, MET and FGFR2 in a large cohort of patients with gastric adenocarcinoma. *Gastric Cancer* 18, 227–238 (2015).
- An, X. et al. MET amplification is not rare and predicts unfavorable clinical outcomes in patients with recurrent/metastatic gastric cancer after chemotherapy. *Cancer* 120, 675–682 (2014).
- Kondo, S. et al. Clinical impact of c-Met expression and its gene amplification in hepatocellular carcinoma. *Int. J. Clin. Oncol.* 18, 207–213 (2013).
- 30. Go, H. et al. High MET gene copy number leads to shorter survival in patients with non-small cell lung cancer. *J. Thorac. Oncol.* **5**, 305–313 (2010).
- Lennerz, J. K. et al. MET amplification identifies a small and aggressive subgroup of esophagogastric adenocarcinoma with evidence of responsiveness to crizotinib. J. Clin. Oncol. 29, 4803–4810 (2011).
- Jardim, D. L. et al. Analysis of 1,115 patients tested for MET amplification and therapy response in the MD Anderson phase I clinic. *Clin. Cancer Res.* 20, 6336–6345 (2014).
- Frampton, G. M. et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. *Nat. Biotechnol.* 31, 1023–1031 (2013).
- Cheng, D. T. et al. Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT): a hybridization capture-based

next-generation sequencing clinical assay for solid tumor molecular oncology. *J. Mol. Diagn.* **17**, 251–264 (2015).

- Garcia, E. P. et al. Validation of oncoPanel: a targeted next-generation sequencing assay for the detection of somatic variants in cancer. *Arch. Pathol. Lab. Med.* 141, 751–758 (2017).
- Zhao, M., Wang, Q., Wang, Q., Jia, P. & Zhao, Z. Computational tools for copy number variation (CNV) detection using next-generation sequencing data: features and perspectives. *BMC Bioinforma*. 14 (Suppl. 11), 51 (2013).
- Tan, R. et al. An evaluation of copy number variation detection tools from whole-exome sequencing data. *Hum. Mutat.* 35, 899–907 (2014).
- Fromer, M. et al. Discovery and statistical genotyping of copy-number variation from whole-exome sequencing depth. *Am. J. Hum. Genet.* **91**, 597–607 (2012).
- Krumm, N. et al. Copy number variation detection and genotyping from exome sequence data. *Genome Res.* 22, 1525–1532 (2012).
- Plagnol, V. et al. A robust model for read count data in exome sequencing experiments and implications for copy number variant calling. *Bioinformatics* 28, 2747–2754 (2012).
- Li, J. et al. CONTRA: copy number analysis for targeted resequencing. *Bioinformatics* 28, 1307–1313 (2012).
- 42. Johansson, L. F. et al. CoNVaDING: single exon variation detection in targeted NGS data. *Hum. Mutat.* **37**, 457–464 (2016).
- Shen, R. & Seshan, V. È. FACETS: allele-specific copy number and clonal heterogeneity analysis tool for high-throughput DNA sequencing. *Nucleic Acids Res.* 44, e131 (2016).
- Hung, S. S. et al. Assessment of capture and amplicon-based approaches for the development of a targeted next-generation sequencing pipeline to personalize lymphoma management. *J. Mol. Diagn.* 20, 203–214 (2018).
- McCombie, W. R., McPherson, J. D. & Mardis, E. R. Next-generation sequencing technologies. *Cold Spring Harb Perspect. Med.* https://doi.org/10.1101/ cshperspect.a036798 (2019).
- Lanman, R. B. et al. Analytical and clinical validation of a digital sequencing panel for quantitative, highly accurate evaluation of cell-free circulating tumor DNA. *PLoS One* **10**, e0140712 (2015).
- Paweletz, C. P. et al. Bias-corrected targeted next-generation sequencing for rapid, multiplexed detection of actionable alterations in cell-free DNA from advanced lung cancer patients. *Clin. Cancer Res.* 22, 915–922 (2016).
- Guibert, N. et al. Amplicon-based next-generation sequencing of plasma cell-free DNA for detection of driver and resistance mutations in advanced non-small cell lung cancer. Ann. Oncol. 29, 1049–1055 (2018).
- Leighl, N. B. et al. Clinical utility of comprehensive cell-free DNA analysis to identify genomic biomarkers in patients with newly diagnosed metastatic non-small cell lung cancer. *Clin. Cancer Res.* 25, 4691–4700 (2019).
- Combaret, V. et al. Influence of neuroblastoma stage on serum-based detection of MYCN amplification. *Pediatric Blood Cancer* 53, 329–331 (2009).
- Janku, F. et al. Development and validation of an ultradeep next-generation sequencing assay for testing of plasma cell-free DNA from patients with

advanced cancer. *Clin. Cancer Res.* **23**, 5648–5656 (2017).

- Zhang, Y., Tang, E. T. & Du, Z. Detection of MET gene copy number in cancer samples using the droplet digital PCR method. *PLoS One* 11, e0146784 (2016).
- Xu, C. W. et al. Comparison of the c-MET gene amplification between primary tumor and metastatic lymph nodes in non-small cell lung cancer. *Thorac. Cancer* 8, 417–422 (2017).
- Galimi, F. et al. Genetic and expression analysis of MET, MACC1, and HGF in metastatic colorectal cancer: response to MET inhibition in patient xenografts and pathologic correlations. *Clin. Cancer Res.* 17, 3146–3156 (2011).
- Bean, J. et al. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. *Proc. Natl Acad. Sci. USA* **104**, 2032–20937 (2007).
- Onozato, R. et al. Activation of MET by gene amplification or by splice mutations deleting the juxtamembrane domain in primary resected lung cancers. J. Thorac. Oncol. 4, 5–11 (2009).
- Chen, H. J. et al. Clinicopathologic and molecular features of epidermal growth factor receptor T790M mutation and c-MET amplification in tyrosine kinase inhibitor-resistant Chinese non-small cell lung cancer. *Pathol. Oncol. Res.* 15, 651–658 (2009).
- Onitsuka, T. et al. Acquired resistance to gefitinib: the contribution of mechanisms other than the T790M, MET, and HGF status. *Lung Cancer* 68, 198–203 (2010).
- Voutsina, A. et al. Combined analysis of KRAS and PIK3CA mutations, MET and PTEN expression in primary tumors and corresponding metastases in colorectal cancer. *Mod. Pathol.* 26, 302–313 (2013).
- Aisner, D. L. et al. The impact of smoking and TP53 mutations in lung adenocarcinoma patients with targetable mutations--the Lung Cancer Mutation Consortium (LCMC2). *Clin. Cancer Res.* 24, 1038–1047 (2018).
- Schildhaus, H. U. et al. MET amplification status in therapy-naive adeno- and squamous cell carcinomas of the lung. *Clin. Cancer Res.* 21, 907–915 (2015).
- Okuda, K., Sasaki, H., Yukiue, H., Yano, M. & Fujii, Y. Met gene copy number predicts the prognosis for completely resected non-small cell lung cancer. *Cancer Sci.* 99, 2280–2285 (2008).
- Okamoto, I. et al. Multiplex genomic profiling of non-small cell lung cancers from the LETS phase III trial of first-line S-1/carboplatin versus paclitaxel/ carboplatin: results of a West Japan Oncology Group study. Oncotarget 5, 2293–2304 (2014).
- Janjigian, Y. Y. et al. MET expression and amplification in patients with localized gastric cancer. *Cancer Epidemiol. Biomarkers Prev.* 20, 1021–1027 (2011).
- Deng, N. et al. A comprehensive survey of genomic alterations in gastric cancer reveals systematic patterns of molecular exclusivity and co-occurrence among distinct therapeutic targets. *Gut* 61, 673–684 (2012).
- Tsugawa, K. et al. Amplification of the c-met, c-erbB2 and epidermal growth factor receptor gene in human gastric cancers: Correlation to clinical features. Oncology 55, 475–481 (1998).
- Raghav, K. et al. MET amplification in metastatic colorectal cancer: an acquired response to EGFR inhibition, not a de novo phenomenon. *Oncotarget* 7, 54627–54631 (2016).
- Zhang, M. et al. MET amplification, expression, and exon 14 mutations in colorectal adenocarcinoma. *Hum. Pathol.* **77**, 108–115 (2018).
- Pal, S. K. et al. Characterization of clinical cases of advanced papillary renal cell carcinoma via comprehensive genomic profiling. *Eur. Urol.* 73, 71–78 (2018).
- Lee, S. J. et al. A survey of c-MET expression and amplification in 287 patients with hepatocellular carcinoma. *Anticancer. Res.* 33, 5179–5186 (2013).
- Park, S. et al. MET amplification, protein expression, and mutations in pulmonary adenocarcinoma. *Lung cancer* **90**, 381–387 (2015).
- Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. *Sci. Signal.* 6, pl1 (2013).
- Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. *Cancer Discov.* 2, 401–404 (2012).
- 74. Brennan, C. W. et al. The somatic genomic landscape of glioblastoma. *Cell* **155**, 462–477 (2013).

- Cancer Genome Atlas Network. Genomic classification of cutaneous melanoma. *Cell* 161, 1681–1696 (2015).
- Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. *Nature* 474, 609–615 (2011).
- Ali, S. M. et al. Prospective comprehensive genomic profiling of advanced gastric carcinoma cases reveals frequent clinically relevant genomic alterations and new routes for targeted therapies. *Oncologist* 20, 499–507 (2015).
- Sequist, L. V. et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. *Sci. Transl. Med.* 3, 75ra26 (2011).
- Schoenfeld, A. J. et al. Tissue-based molecular and histological landscape of acquired resistance to osimertinib given initially or at relapse in patients with EGFR-mutant lung cancers [abstract]. J. Clin. Oncol. 37 (Suppl. 15), 9028 (2019).
- Gouji, T., Takashi, S., Mitsuhiro, T. & Yukito, I. Crizotinib can overcome acquired resistance to CH5424802: is amplification of the MET gene a key factor? J. Thorac. Oncol. 9, e27–e28 (2014)
- Pietrantonio, F. et al. MET-driven resistance to dual EGFR and BRAF blockade may be overcome by switching from EGFR to MET inhibition in BRAF-mutated colorectal cancer. *Cancer Discov.* 6, 963–971 (2016).
- Camidge, D. R. & Davies, K. D. MET copy number as a secondary driver of epidermal growth factor receptor tyrosine kinase inhibitor resistance in EGFR-mutant non-small-cell lung cancer. J. Clin. Oncol. 37, 855–857 (2019).
- Camidge, D. R. et al. Efficacy and safety of crizotinib in patients with advanced c-MET-amplified non-small cell lung cancer (NSCLC) [abstract]. J. Clin. Oncol. 32b, 8001 (2014).
- Camidge, D. R. et al. Crizotinib in patients (pts) with MET-amplified non-small cell lung cancer (NSCLC): updated safety and efficacy findings from a phase 1 trial [abstract]. J. Clin. Oncol. 36 (Suppl. 15), 9062 (2018).
- Schuler, M. H. et al. Phase (Ph) I study of the safety and efficacy of the cMET inhibitor capmatinib (INC280) in patients (pts) with advanced cMET+ non-small cell lung cancer (NSCLC) [abstract]. J. Clin. Oncol. 34 (Suppl. 15), 9067 (2016).
- Frigault, M. M. et al. MET gene copy number gains evaluated by NGS is more predictive than other methods to enrich for papillary RCC patients sensitive to savolitinib, a selective MET inhibitor [abstract]. *Cancer Res.* **78** (Suppl. 13), 4541 (2018).
- Moro-Sibilot, D. et al. Crizotinib in c-MET- or ROS1-positive NSCLC: results of the AcSé phase II trial. *Ann. Oncol.* **30**, 1985–1991 (2019).
- Sequist, L. V. et al. Osimertinib plus savolitinib in patients with EGFR mutation-positive, MET-amplified, non-small-cell lung cancer after progression on EGFR tyrosine kinase inhibitors: interim results from a multicentre, open-label, phase 1b study. *Lancet Oncol.* 21, 373–386 (2020).
- Wu, Y. et al. MÀ09.09 Long-term outcomes to tepotinib plus gefitinib in patients with *EGFR*-mutant NSCLC and MET dysregulation: 18-month follow-up. *J. Thorac. Oncol.* 14, S284 (2019).
- Haura, E. B. et al. JNJ-61186372 (JNJ-372), an EGFR-cMet bispecific antibody, in EGFR-driven advanced non-small cell lung cancer (NSCLC) [abstract]. J. Clin. Oncol. **37** (Suppl. 15), 9009 (2019).
- Wu, Y. L. et al. Phase Ib/II study of capmatinib (INC280) plus gefitinib after failure of epidermal growth factor receptor (EGFR) inhibitor therapy in patients with EGFR-mutated, MET factor-dysregulated non-small-cell lung cancer. J. Clin. Oncol. 36, 3101–3109 (2018).
- Schmidt, L. et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. *Nat. Genet.* 16, 68–73 (1997).
- Jeffers, M. et al. Activating mutations for the Met tyrosine kinase receptor in human cancer. *Proc. Natl Acad. Sci. USA* 94, 11445–11450 (1997).
- Graveel, C. et al. Activating Met mutations produce unique tumor profiles in mice with selective duplication of the mutant allele. *Proc. Natl Acad. Sci.* USA 101, 17198–17203 (2004).
- Durinck, S. et al. Spectrum of diverse genomic alterations define non-clear cell renal carcinoma subtypes. *Nat. Genet.* 47, 13–21 (2015).
- Albiges, L. et al. MET is a potential target across all papillary renal cell carcinomas: result from a large

molecular study of pRCC with CGH array and matching gene expression array. *Clin. Cancer Res.* **20**, 3411–3421 (2014).

- Cancer Genome Atlas Research Network et al. Comprehensive molecular characterization of papillary renal-cell carcinoma. *N. Engl. J. Med.* **374**, 135–145 (2016).
- Schmidt, L. et al. Novel mutations of the MET proto-oncogene in papillary renal carcinomas. Oncogene 18, 2343–2350 (1999).
- Lorenzato, A. et al. Novel somatic mutations of the MET oncogene in human carcinoma metastases activating cell motility and invasion. *Cancer Res.* 62, 7025–7030 (2002).
- 100. Zhuang, Z. et al. Trisomy 7-harbouring non-random duplication of the mutant MET allele in hereditary papillary renal carcinomas. *Nat. Cenet.* **20**, 66–69 (1998).
- Park, W. S. et al. Somatic mutations in the kinase domain of the Met/hepatocyte growth factor receptor gene in childhood hepatocellular carcinomas. *Cancer Res.* 59, 307–310 (1999).
- Aebersold, D. M. et al. Prevalence and clinical impact of Met Y1253D-activating point mutation in radiotherapy-treated squamous cell cancer of the exploration of the second secon
- oropharynx. Oncogene 22, 8519–8523 (2003).
 103. Ghadjar, P. et al. MET Y1253D-activating point mutation and development of distant metastasis in advanced head and neck cancers. *Clin. Exp. Metastasis* 26, 809–815 (2009).
- Bahcall, M. et al. Acquired METD1228V mutation and resistance to MET inhibition in lung cancer. *Cancer Discov.* 6, 1334–1341 (2016).
- Heist, R. S. et al. Acquired resistance to crizotinib in NSCLC with MET exon 14 skipping. *J. Thorac. Oncol.* 11, 1242–1245 (2016).
- Ou, S. I. et al. Emergence of preexisting MET Y1230C mutation as a resistance mechanism to crizotinib in NSCLC with MET exon 14 skipping. J. Thorac. Oncol. 12, 137–140 (2017).
- Guo, R. et al. MET inhibitor resistance in patients with MET exon 14-altered lung cancers [abstract]. *J. Clin. Oncol.* **37** (Suppl. 15), 9006 (2019).
 Li, A. et al. Acquired MET V1248H and D1246N
- 108. Li, A. et al. Acquired MET Y1248H and D1246N mutations mediate resistance to MET inhibitors in non-small cell lung cancer. *Clin. Cancer Res.* 23, 4929–4937 (2017).
- 109. Liang, Y., Chen, Q., Lin, Y., Liu, H. & Qiu, B. P3.01-60 a novel MET D1246H mutation after progression of EGFR-TKI/MET inhibitor combined therapy in a NSCLC patient with acquired MET amplification. J. Thorac. Oncol. 13, S890 (2018).
- Ponzetto, C. et al. A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. *Cell* **77**, 261–271 (1994).
- Peschard, P., Ishiyama, N., Lin, T., Lipkowitz, S. & Park, M. A conserved DpYR motif in the juxtamembrane domain of the Met receptor family forms an atypical c-Cbl/Cbl-b tyrosine kinase binding domain binding site required for suppression of oncogenic activation. J. Biol. Chem. 279, 29565–29571 (2004).
 Frampton, G. M. et al. Activation of MET via diverse
- Frampton, G. M. et al. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. *Cancer Discov.* 5, 850–859 (2015).
- 113. Schrock, A. B. et al. Characterization of 298 patients with lung cancer harboring MET exon 14 skipping alterations. J. Thorac. Oncol. 11, 1493–1502 (2016).
- 114. Ma, P. C. et al. c-MET mutational analysis in small cell lung cancer: novel juxtamembrane domain mutations regulating cytoskeletal functions. *Cancer Res.* 63, 6272–6281 (2003).
- 115. Ma, P. C. et al. Functional expression and mutations of c-Met and its therapeutic inhibition with SU11274 and small interfering RNA in non-small cell lung cancer. *Cancer Res.* **65**, 1479–1488 (2005).
- The Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. *Nature* 511, 543–550 (2014).
- Liu, X. et al. Next-generation sequencing of pulmonary sarcomatoid carcinoma reveals high frequency of actionable MET gene mutations. J. Clin. Oncol. 34, 794–802 (2016).
- Lee, J. et al. Gastrointestinal malignancies harbor actionable MET exon 14 deletions. *Oncotarget* 6, 28211–28222 (2015).
- 119. Yan, B. et al. Identification of MET genomic amplification, protein expression and alternative splice isoforms in neuroblastomas. *J. Clin. Pathol.* 66, 985–991 (2013).

- 120. Suzawa, K. et al. Acquired MET exon 14 alteration drives secondary resistance to epidermal growth factor receptor tyrosine kinase inhibitor in EGFR-mutated lung cancer. *JCO Precis. Oncol.* https://doi.org/10.1200/PO.19.00011 (2019).
- https://doi.org/10.1200/PO.19.00011 (2019). 121. Tong, J. H. et al. MET amplification and exon 14 splice site mutation define unique molecular subgroups of non-small cell lung carcinoma with poor prognosis. *Clin. Cancer Res.* **22**, 3048–3056 (2016).
- 122. Awad, M. M. et al. MET exon 14 mutations in non-small-cell lung cancer are associated with advanced age and stage-dependent MET genomic amplification and c-Met overexpression. J. Clin. Oncol. 34, 721–730 (2016).
- Kong-Beltran, M. et al. Somatic mutations lead to an oncogenic deletion of Met in lung cancer. *Cancer Res.* 66, 283–289 (2006).
- 124. Peschard, P. et al. Mutation of the c-Cbl TKB domain binding site on the Met receptor tyrosine kinase converts it into a transforming protein. *Mol. Cell* 8, 995–1004 (2001).
- 125. Abella, J. V. et al. Met/hepatocyte growth factor receptor ubiquitination suppresses transformation and is required for Hrs phosphorylation. *Mol. Cell. Biol.* 25, 9632–9645 (2005).
- 126. Fujino, T. et al. Sensitivity and resistance of MET exon 14 mutations in lung cancer to eight MET tyrosine kinase inhibitors in vitro. J. Thorac. Oncol. 14, 1753–1765 (2019).
- 127. Kong-Beltran, M., Stamos, J. & Wickramasinghe, D. The Sema domain of Met is necessary for receptor dimerization and activation. *Cancer Cell* 6, 75–84 (2004).
- 128. Liu, S. et al. Functional consequence of the METT1010I polymorphism in breast cancer. *Oncotarget* **6**, 2604–2614 (2015).
- 129. Seiwert, T. Y. et al. The MET receptor tyrosine kinase is a potential novel therapeutic target for head and neck squamous cell carcinoma. *Cancer Res.* 69, 3021–3031 (2009).
- 130. Stella, G. M. et al. MET mutations in cancers of unknown primary origin (CUPs). *Hum. Mutat.* **32**, 44–50 (2011).
- 131. de Melo Gagliato, D. et al. Analysis of MET genetic aberrations in patients with breast cancer at MD Anderson phase I unit. *Clin. Breast Cancer* 14, 468–474 (2014).
- Krishnaswamy, S. et al. Ethnic differences and functional analysis of MET mutations in lung cancer. *Clin. Cancer Res.* 15, 5714–5723 (2009).
- 133. Kong, L. R., Binte Mohamed Salleh, N. A., Tan, T. Z., Kappei, D. & Goh, B. C. Characterization of MEFN375S as an activating mutation in squamous cell carcinoma of the lung [abstract P1.02-041]. *J. Thorac. Oncol.* **12**, S512 (2017).
- 134. Tengs, T. et al. A transforming MET mutation discovered in non-small cell lung cancer using microarray-based resequencing. *Cancer Lett.* 239, 227–233 (2006).
- Samorodnitsky, E. et al. Evaluation of hybridization capture versus amplicon-based methods for whole-exome sequencing. *Hum. Mutat.* 36, 903–914 (2015).
- 136. Poirot, B. et al. MET exon 14 alterations and new resistance mutations to tyrosine kinase inhibitors: risk of inadequate detection with current amplicon-based NGS panels. J. Thorac. Oncol. 12, 1582–1587 (2017).
- NGS panels. J. Thorac. Oncol. 12, 1582–1587 (2017).
 137. Davies, K. D. et al. DNA-based versus RNA-based detection of MET exon 14 skipping events in lung cancer. J. Thorac. Oncol. 14, 737–741 (2019).
- 138. Farragher, S. M., Tanney, A., Kennedy, R. D. & Paul Harkin, D. RNA expression analysis from formalin fixed paraffin embedded tissues. *Histochem. Cell Biol.* 130, 435–445 (2008).
- Horak, P., Frohling, S. & Glimm, H. Integrating next-generation sequencing into clinical oncology: strategies, promises and pitfalls. *ESMO Open.* 1, e000094 (2016).
- 140. Hao, M. et al. QTug.sau-3B is a major quantitative trait locus for wheat hexaploidization. *G3* **4**, 1943–1953 (2014).
- 141. Benayed, R. et al. High yield of RNA sequencing for targetable kinase fusions in lung adenocarcinomas with no mitogenic driver alteration detected by DNA sequencing and low tumor mutation burden. *Clin. Cancer Res.* 25, 4712–4722 (2019).
- 142. Kulkarni, M. M. Digital multiplexed gene expression analysis using the NanoString nCounter system. *Curr. Protoc. Mol. Biol.* **94**, 25B.10.1–25B.10.17 (2011).
- 143. Paik, P. K. et al. Response to MET inhibitors in patients with stage IV lung adenocarcinomas

harboring MET mutations causing exon 14 skipping. *Cancer Discov.* **5**, 842–849 (2015). 144. Sunami, K. et al. Multiplex diagnosis of oncogenic

- 144. Sunami, K. et al. Multiplex diagnosis of oncogenic fusion and MET exon skipping by molecular counting using formalin-fixed paraffin embedded lung adenocarcinoma tissues. J. Thorac. Oncol. 11, 203–212 (2016).
- 145. Berthou, S. et al. The Met kinase inhibitor SU11274 exhibits a selective inhibition pattern toward different receptor mutated variants. *Oncogene* 23, 5387–5393 (2004).
- 146. Hari, S. B., Merritt, E. A. & Maly, D. J. Sequence determinants of a specific inactive protein kinase conformation. *Chem. Biol.* **20**, 806–815 (2013).
- 147. Choueiri, T. K. et al. Phase II and biomarker study of the dual MET/VEGFR2 inhibitor foretinib in patients with papillary renal cell carcinoma. *J. Clin. Oncol.* **31**, 181–186 (2013).
- 148. Kang, J. et al. Osimertinib and cabozantinib combinatorial therapy in an EGFR-mutant lung adenocarcinoma patient with multiple MET secondary-site mutations after resistance to crizotinib. J. Thorac. Oncol. 13, e49–e53 (2018).
- National Comprehensive Cancer Network Non-Small Cell Lung Cancer (Version 3.2020) https://www.nccn. org/professionals/physician_gls/pdf/nscl_blocks.pdf (2020).
- 150. Pfizer media. Pfizer's Xalkori (crizotinib) receives FDA breakthrough therapy designation in two new indications. *Pfizer* https://www.pfizer.com/news/pressrelease/press-release-detail/pfizer_s_xalkori_ crizotinib_receives_fda_breakthrough_therapy_ designation_in_two_new_indications-0.(2018)
- designation_in_two_new_indications-0 (2018).
 151. US Food and Drug Administration. Breakthrough therapy approvals *FDA* https://www.fda.gov/drugs/ndaand-bla-approvals/breakthrough-therapy-approvals (2019).
- 152. Rotow, J. K. et al. Co-occurring alterations in the RAS-MAPK pathway limit response to MET inhibitor treatment in MET exon 14 skipping mutation-positive lung cancer. *Clin. Cancer Res.* 26, 439–449 (2020).
- 153. Pennacchietti, S. et al. Microenvironment-derived HGF overcomes genetically determined sensitivity to anti-MET drugs. *Cancer Res.* 74, 6598–6609 (2014).
- Cooper, C. S. et al. Molecular cloning of a new transforming gene from a chemically transformed human cell line. *Nature* **311**, 29–33 (1984).
 S. International Cancer Genome Consortium PedBrain
- 155. International Cancer Genome Consortium PedBrain Tumor Project. Recurrent MET fusion genes represent a drug target in pediatric glioblastoma. *Nat. Med.* 22, 1314–1320 (2016).
- Bao, Z. S. et al. RNA-seq of 272 gliomas revealed a novel, recurrent PTPR21-MET fusion transcript in secondary glioblastomas. *Genome Res.* 24, 1765–1773 (2014).
- Stransky, N., Čerami, E., Schalm, S., Kim, J. L. & Lengauer, C. The landscape of kinase fusions in cancer. *Nat. Commun.* 5, 4846 (2014).
 Soman, N. R., Correa, P., Ruiz, B. A. & Wogan, G. N.
- 158. Soman, N. R., Correa, P., Ruiz, B. A. & Wogan, G. N The TPR-MET oncogenic rearrangement is present and expressed in human gastric carcinoma and precursor lesions. *Proc. Natl Acad. Sci. USA* 88, 4892–4896 (1991).
- 159. Kim, P., Jia, P. & Zhao, Z. Kinase impact assessment in the landscape of fusion genes that retain kinase domains: a pan-cancer study. *Brief. Bioinform.* **19**, 450–460 (2018).
- 160. Plenker, D. et al. Structural alterations of MET trigger response to MET kinase inhibition in lung adenocarcinoma patients. *Clin. Cancer Res.* 24, 1337–1343 (2018).
- 161. Pan, Y. et al. Detection of Novel NRG1, EGFR, and MET fusions in lung adenocarcinomas in the Chinese population. J. Thorac. Oncol. 14, 2003–2008 (2019).
- 162. Davies, K. D. et al. Dramatic response to crizotinib in a patient with lung cancer positive for an HLA-DRB1-MET gene fusion. JCO Precis. Oncol. https://doi.org/ 10.1200/PO.17.00117 (2017).
- 10.1200/PO.17.00117 (2017).
 163. Liu, J., Li, X. & Peng, J. A novel CAV1-MET fusion in SCLC transformation responds to crizotinib and osimertinib treatment. J. Thorac. Oncol. 14, e126–e128 (2019).
- 164. Subramaniam, D. S. et al. RNA-Seq analysis of glioma tumors to reveal targetable gene fusions [abstract]. *J. Clin. Oncol.* **35** (Suppl. 15), 2019 (2017).
- 165. Kim, H. P. et al. Novel fusion transcripts in human gastric cancer revealed by transcriptome analysis. Oncogene 33, 5434–5441 (2014).
- Oncogene 33, 5434–5441 (2014).
 166. Kudlow, B. et al. Genetic aberrations driving MET deregulation detected with anchored multiplex PCR and next-generation sequencing [abstract 1165P]. Ann. Oncol. 27 [Suppl. 6], vi403 (2016).

- 167. Yeh, I. et al. Activating MET kinase rearrangements in melanoma and Spitz tumours. *Nat. Commun.* 6, 7174 (2015).
- The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. *Nature* 490, 61–70 (2012).
- Yoo, O' To (2012).
 Yinga, E., Gramaglia, D., Longati, P., Bardelli, A. & Comoglio, P. M. Loss of the exon encoding the juxtamembrane domain is essential for the oncogenic activation of TPR-MET. *Oncogene* 18, 4275–4281 (1999).
- 170. Rodrigues, G. A. & Park, M. Dimerization mediated through a leucine zipper activates the oncogenic potential of the Met receptor tyrosine kinase. *Mol. Cell. Biol.* **13**, 6711–6722 (1993).
- Petrini, I. Biology of MET: a double life between normal tissue repair and tumor progression. *Ann. Transl. Med.* 3, 82 (2015).
- 172. Flucke, U. et al. TFG-MET fusion in an infantile spindle cell sarcoma with neural features. *Genes, Chromosomes Cancer* 56, 663–667 (2017).
- 173. Gow, C. H. et al. Oncogenic function of a KIF5B-MET fusion variant in non-small cell lung cancer. *Neoplasia* 20, 838–847 (2018).
- 174. Heyer, E. E. et al. Diagnosis of fusion genes using targeted RNA sequencing. *Nat. Commun.* **10**, 1388 (2019).
- 175. Treangen, T. J. & Salzberg, S. L. Repetitive DNA and next-generation sequencing: computational challenges and solutions. *Nat. Rev. Genet.* **13**, 36–46 (2011).
- 176. Wang, O., Xia, J., Jia, P., Pao, W. & Zhao, Z. Application of next generation sequencing to human gene fusion detection: computational tools, features and perspectives. *Brief. Bioinform.* 14, 506–519 (2013).
- 177. Levin, J. Z. et al. Targeted next-generation sequencing of a cancer transcriptome enhances detection of sequence variants and novel fusion transcripts. *Genome Biol.* **10**, R115 (2009).
- 178. Sattler, M. et al. A novel small molecule Met inhibitor induces apoptosis in cells transformed by the oncogenic TPR-MET tyrosine kinase. *Cancer Res.* 63, 5462–5469 (2003).
- Zhu, Y. C. et al. Identification of a novel crizotinibsensitive MET-ATXN7L1 gene fusion variant in lung adenocarcinoma by next generation sequencing. *Annals Oncol.* 29, 2392–2393 (2018).
 Poulsen, T. T. et al. Sym015: a highly efficacious
- Poulsen, T. T. et al. Sym015: a highly efficacious antibody mixture against MET-amplified tumors. *Clin. Cancer Res.* 23, 5923–5935 (2017).
- 181. Spigel, D. R. et al. Results from the phase III randomized trial of onartuzumab plus erlotinib versus erlotinib in previously treated stage IIIB or IV non-small-cell lung cancer: METLung. J. Clin. Oncol. 35, 412–420 (2016).
- 182. Ryan, C. J. et al. Targeted MET inhibition in castration-resistant prostate cancer: a randomized phase II study and biomarker analysis with rilotumumab plus mitoxantrone and prednisone. *Clin. Cancer Res.* **19**, 215–224 (2013).
- 183. Iveson, T. et al. Rilotumumab in combination with epirubicin, cisplatin, and capecitabine as first-line treatment for gastric or oesophagogastric junction adenocarcinoma: an open-label, dose de-escalation phase 1b study and a double-blind, randomised phase 2 study. *Lancet Oncol.* **15**, 1007–1018 (2014).
- Spigel, D. R. et al. Randomized phase II trial of onartuzumab in combination with erlotinib in patients with advanced non-small-cell lung cancer. J. Clin. Oncol. **31**, 4105–4114 (2013).
- 185. Lahat, G. et al. The expression of c-Met pathway components in unclassified pleomorphic sarcoma/ malignant fibrous histiocytoma (UPS/MFH): a tissue microarray study. *Histopathology* **59**, 556–561 (2011).
- 186. Srivastava, A. K. et al. Pharmacodynamic response of the MET/HGF receptor to small-molecule tyrosine kinase inhibitors examined with validated, fit-for-clinic immunoassays. *Clin. Cancer Res.* **22**, 3683–3694 (2016).
- 187. Gordon, M. S. et al. Safety, pharmacokinetics, and pharmacodynamics of AMG 102, a fully human hepatocyte growth factor-neutralizing monoclonal antibody, in a first-in-human study of patients with advanced solid tumors. *Clin. Cancer Res.* 16, 699–710 (2010).
- Stenger, M. Calculating H-score. *The ASCO Post* https://ascopost.com/issues/april-10-2015/calculatingh-score/ (2015).
- 189. Mignard, X. et al. c-MET overexpression as a poor predictor of MET amplifications or exon 14 mutations

in lung sarcomatoid carcinomas. J. Thorac. Oncol. 13, 1962–1967 (2018).

- 190. Catenacci, D. V. et al. Absolute quantitation of Met using mass spectrometry for clinical application: assay precision, stability, and correlation with MET gene amplification in FFPE tumor tissue. *PLoS One* 9, e100586 (2014).
- 191. Sholl, L. M. et al. Combined use of ALK immunohistochemistry and FISH for optimal detection of ALK-rearranged lung adenocarcinomas. J. Thorac. Oncol. 8, 322–328 (2013).
- 192. Watermann, I. et al. Improved diagnostics targeting c-MET in non-small cell lung cancer: expression, amplification and activation? *Diagn. Pathol.* **10**, 130 (2015).
- 193. Bubendorf, L. et al. Prevalence and clinical association of MET gene overexpression and amplification in patients with NSCLC: results from the European Thoracic Oncology Platform (ETOP) Lungscape project. Lung Cancer 111, 143–149 (2017).
- 194. Casadevall, D. et al. MET expression and copy number heterogeneity in nonsquamous non-small cell lung cancer (nsNSCLC). Oncotarget 6, 16215–16226 (2015).
- 195. Guo, Ř. et al. MET IHC is a poor screen for MET amplification or MET exon 14 mutations in lung adenocarcinomas: data from a tri-institutional cohort of the Lung Cancer Mutation Consortium. J. Thorac. Oncol. 14, 1666–1671 (2019).
- Descarpentries, C. et al. Optimization of routine testing for MET exon 14 splice site mutations in NSCLC patients. J. Thorac. Oncol. 13, 1873–1883 (2018).
- 197. Lambros, L. & Uguen, A. MET immunohistochemistry should be avoided in selecting non-small-cell lung cancers requiring MET exon 14 skipping mutation analysis. *Clin. Lung Cancer* 20, e418–e420 (2019).
- analysis. *Clin. Lung Cancer* 20, e418–e420 (2019).
 198. Nakajima, M. et al. The prognostic significance of amplification and overexpression of c-met and c-erb B-2 in human gastric carcinomas. *Cancer* 85, 1894–1902 (1999).
- 199. Nishio, M. et al. Phase I study of the anti-MET antibody onartuzumab in patients with solid tumors and METpositive lung cancer. *Invest. New Drugs* 33, 632–640 (2015).
- 200. Sakai, D. et al. A non-randomized, open-label, single-arm, phase 2 study of emibetuzumab in Asian patients with MET diagnostic positive, advanced gastric cancer. *Cancer Chemother. Pharmacol.* 80, 1197–1207 (2017).
- 201. Tabernero, J. et al. A pharmacodynamic/ pharmacokinetic study of ficlatuzumab in patients with advanced solid tumors and liver metastases. *Clin. Cancer Res.* **20**, 2793–2804 (2014).
- Angevin, E. et al. A first-in-human phase I study of SAR125844, a selective MET tyrosine kinase inhibitor, in patients with advanced solid tumours with MET amplification. *Eur. J. Cancer* 87, 131–139 (2017).
 Santoro, A. et al. Tivantinib for second-line treatment
- 203. Santoro, A. et al. Tivantinib for second-line treatment of advanced hepatocellular carcinoma: a randomised, placebo-controlled phase 2 study. *Lancet Oncol.* 14, 55–63 (2013).
- 204. Goyal, L. et al. A phase 2 and biomarker study of cabozantinib in patients with advanced cholangiocarcinoma. *Cancer* **123**, 1979–1988 (2017).
- 205. Li, A. N., Yang, J.-J., Zhang, X. & Wu, Y.-L. Impact of different MET alterations on the efficacy of crizotinib in non-small-cell lung cancer [abstract]. J. Clin. Oncol. 34 (Suppl. 15), e20622 (2016).
- Rimassa, L et al. Tivantinib for second-line treatment of MET-high, advanced hepatocellular carcinoma (METIV-HCC): a final analysis of a phase 3, randomised, placebo-controlled study. *Lancet Oncol.* 19, 682–693 (2018).
- 207. Ryoo, B. Y. et al. Phase II trial of tepotinib vs sorafenib in Asian patients (pts) with advanced hepatocellular carcinoma (HCC) [abstract 621PD]. Ann. Oncol. 29 (Suppl. 8), viii207 (2018).

- 208. Koeppen, H. et al. Biomarker analyses from a placebo-controlled phase II study evaluating erlotinib±onartuzumab in advanced non-small cell lung cancer: MET expression levels are predictive of patient benefit. *Clin. Cancer Res.* **20**, 4488–4498 (2014).
- 209. Strickler, J. H. et al. First-in-human phase I, dose-escalation and -expansion study of telisotuzumab vedotin, an antibody-drug conjugate targeting c-Met, in patients with advanced solid tumors. J. Clin. Oncol 36, 3298–3306 (2018).
- Heist, R. S. et al. c-Met expression and response to telisotuzumab vedotin (teliso-v) in patients with non-small cell lung cancer [abstract]. *J. Clin. Oncol.* 37 (Suppl. 15), 9023 (2019).
- Tsao, M. S. et al. Differential expression of Met/hepatocyte growth factor receptor in subtypes of non-small cell lung cancers. *Lung Cancer* 20, 1–16 (1998).
- 212. Bang, Y. J. et al. Phase 1 study of capmatinib in MET-positive solid tumor patients: dose escalation and expansion of selected cohorts. *Cancer Sci.* 111, 536–547 (2020).
- Hong, D. S. et al. Phase I study of AMG 337, a highly selective small-molecule MET inhibitor, in patients with advanced solid tumors. *Clin. Cancer Res.* 25, 2403–2413 (2019).
- 214. Van Cutsem, È. et al. A multicenter phase II study of AMG 337 in patients with MET-amplified gastric/ gastroesophageal junction/esophageal adenocarcinoma and other MET-amplified solid tumocar Clin Creater Res 26 26 2012 (2019)
- tumors. Clin. Cancer Res. 25, 2414–2423 (2019).
 215. Shah, M. A. et al. Phase II study evaluating 2 dosing schedules of oral foretinib (GSK1363089), cMET/ VEGFR2 inhibitor, in patients with metastatic gastric cancer. PLoS One 8, e54014 (2013).
- 216. Qin, S. et al. A phase II study of the efficacy and safety of the MET inhibitor capmatinib (INC280) in patients with advanced hepatocellular carcinoma. *Ther. Adv. Med. Oncol.* **11**, 17588355919889001 (2019).
- Landi, L. et al. Crizotinib in MET-deregulated or ROS1-rearranged pretreated non-small cell lung cancer (METROS): a phase II, prospective, multicenter, two-arms trial. *Clin. Cancer Res.* 25, 7312–7319 (2019).
- Yang, J. et al. A phase lb trial of savolitinib plus gefitinib for Chinese patients with EGFR-mutant MET-amplified advanced NSCLC [abstract OA 09.06].
 J. Thorac. Oncol. 12, S1769 (2017).
- Choueiri, T. K. et al. Biomarker-based phase II trial of savolitinib in patients with advanced papillary renal cell cancer. J. Clin. Oncol. 35, 2993–3001 (2017).
- 220. Eng, C. et al. A randomized, placebo-controlled, phase 1/2 study of tivantinib (ARQ 197) in combination with irinotecan and cetuximab in patients with metastatic colorectal cancer with wild-type KRAS who have received first-line systemic therapy. *Int. J. Cancer.* **139**, 177–186 (2016).
- Diéras, V. et al. Randomized, phase II, placebo-controlled trial of onartuzumab and/or bevacizumab in combination with weekly paclitaxel in patients with metastatic triple-negative breast cancer. *Ann. Oncol.* 26, 1904–1910 (2015).
- 222. Kishi, K. et al. First-line onartuzumab plus erlotinib treatment for patients with MET-positive and EGFR mutation-positive non-small-cell lung cancer. *Cancer Treat. Res. Commun.* 18, 100113 (2019).
- Kalluri, R. & Weinberg, R. A. The basics of epithelial-mesenchymal transition. *J. Clin. Invest.* **119**, 1420–1428 (2009).
- 224. Sennino, B., Ishiguro-Oonuma, T., Schriver, B. J., Christensen, J. G. & McDonald, D. M. Inhibition of c-Met reduces lymphatic metastasis in RIP-Tag2 transgenic mice. *Cancer Res.* **73**, 3692–3703 (2013).
- Pennacchietti, S. et al. Hypoxia promotes invasive growth by transcriptional activation of the Met protooncogene. *Cancer Cell* 3, 347–361 (2003).
- 226. Paez-Ribes, M. et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local

invasion and distant metastasis. *Cancer Cell* **15**, 220–231 (2009).

- Lu, K. V. et al. VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex. *Cancer Cell* 22, 21–35 (2012).
- 228. Choi, W., Lee, J., Lee, J., Lee, S. H. & Kim, S. Hepatocyte growth factor regulates macrophage transition to the M2 phenotype and promotes murine skeletal muscle regeneration. *Front. Physiol.* **10**, 914 (2019).
- Biswas, S. K. & Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. *Nat. Immunol.* **11**, 889–896 (2010).
- Li, H. et al. MET inhibitors promote liver tumor evasion of the immune response by stabilizing PDL1. *Gastroenterology* 156, 1849–1861.e13 (2019).
- Roskoski, R. Jr. Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes. *Pharmacol. Res.* **103**, 26–48 (2016).
- 232. Engstrom, L. D. et al. Glesatinib exhibits antitumor activity in lung cancer models and patients harboring MET exon 14 mutations and overcomes mutationmediated resistance to type I MET inhibitors in nonclinical models. *Clin. Cancer Res.* 23, 6661–6672 (2017).
- Tiedt, R. et al. A drug resistance screen using a selective MET inhibitor reveals a spectrum of mutations that partially overlap with activating mutations found in cancer patients. *Cancer Res.* **71**, 5255–5264 (2011).
- 234. Yan, S. B. et al. LY2801653 is an orally bioavailable multi-kinase inhibitor with potent activity against MET, MST1R, and other oncoproteins, and displays anti-tumor activities in mouse xenograft models. *Invest. New Drugs* **31**, 833–844 (2013).

Acknowledgements

The authors are grateful to C. Wilhelm of Memorial Sloan Kettering Cancer Center for his thorough review and assistance with the manuscript. Some of the results shown here are in whole or part based upon data generated by the TCGA Research Network: https://www.cancer.gov/tcga.

Author contributions

All authors made substantial contributions to all aspects of the preparation of this manuscript.

Competing interests

R.G., J.L., J.C. and N.R. declare no competing interests. M.A. has received honoraria/speaker fees from Biocartis and Invivoscribe relating to activities outside the submitted work. A.D. has received honoraria/speaker fees from Abbvie, AstraZeneca, Beigene, BergenBio, Blueprint Medicines, Exelixis, Hengrui Therapeutics, Helsinn, Ignyta/Genentech/ Roche, Lilly, Loxo, Loxo/Bayer/Lilly, Medscape, MORE Health, OncLive, PeerVoice, Pfizer, Physicians Education Resources, Research to Practice, Takeda/Ariad/Millennium, Targeted Oncology, TP Therapeutics, Tyra Biosciences, Verastem and Wolters Kluwer; has served on/received fees for membership of the advisory board of Abbvie, AstraZeneca, Beigene, BergenBio, Blueprint Medicines, Exelixis, Hengrui Therapeutics, Helsinn, Ignyta/Genentech/Roche, Loxo, Loxo/ Bayer/Lilly, MORE Health, Pfizer, Takeda/Ariad/Millennium, TP Therapeutics, Tyra Biosciences and Verastem; has received research funding from Exelixis, Foundation Medicine, GlaxoSmithKline, Ignyta/Roche, Pfizer, PharmaMar, Taiho and Teva; and has received non-financial support from Ignyta/ Roche, Merck and Puma.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information is available for this paper at https://doi.org/10.1038/s41571-020-0377-z.

© Springer Nature Limited 2020