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Abstract  

Precision oncology relies on the identification of targetable molecular alterations in tumor tissues. 

In many tumor types, a limited set of molecular tests is currently part of standard diagnostic 

workflows. However, universal testing for all targetable alterations, especially rare ones, is limited 

by the cost and availability of molecular assays. From 2017 to 2021, multiple studies have shown 

that artificial intelligence (AI) methods can predict the probability of specific genetic alterations 

directly from conventional hematoxylin and eosin (H&E) tissue slides. Although these methods are 

currently less accurate than gold-standard testing (e.g. immunohistochemistry, polymerase chain 

reaction or next-generation sequencing), they could be used as pre-screening tools to reduce the 

workload of genetic analyses. In this systematic literature review, we summarize the state of the art 

in predicting molecular alterations from H&E using AI. We found that AI methods perform 

reasonably well across multiple tumor types, although few algorithms have been broadly validated. 

In addition, we found that genetic alterations in FGFR, IDH, PIK3CA, BRAF, TP53 and DNA repair 

pathways are predictable from H&E in multiple tumor types, while many other genetic alterations 

have rarely been investigated or were only poorly predictable. Finally, we discuss the next steps for 

the implementation of AI-based surrogate tests in diagnostic workflows.  

  



 

Background 

Histopathology slides as a high-density source of information  

Histopathology is the backbone of cancer diagnostics - for almost every patient with a solid tumor, 

the final diagnosis is made by a pathologist using microscopy. Routine histopathology images of 

tissue specimens stained with hematoxylin and eosin (H&E) contain an immense amount of useful 

information. In addition to diagnostic information, this includes standard prognostic information such 

as tumor differentiation, tumor budding, lymphovascular invasion, vascular invasion, perineural 

invasion, among others. Other common prognostic biomarkers evaluated in research studies 

include the tumor-stroma ratio [1], tumor-infiltrating-lymphocytes [2–8], stromal morphology [9], and 

presence of necrosis [10]. In addition to these prognostic patterns, specific morphological patterns 

have been linked to specific genetic alterations in cancer, such as BRAF mutations [11] and 

microsatellite instability (MSI) in colorectal cancer [12], hormone receptor overexpression in breast 

cancer [13], or EGFR mutations in lung cancer [14]. In summary, H&E-stained tissue sections can 

reflect specific molecular alterations. 

Computer-based image analysis in histopathology 

As the workload of pathologists increases in both quantity and complexity, they have limited time 

to devote to individual cases, which tend to be more and more challenging. This holds true for 

oncologic cases in particular. The impending scarcity of high-quality pathology services is being 

further aggravated by an aging pathology workforce and a lack of younger medical professionals 

moving into this field [15]. Computer-based image analysis was proposed decades ago as a useful 

strategy to address this problem [16]. Early studies used rule-based image analysis [2,17], or so-

called “classical” machine learning algorithms, including support vector machines [18,19] or random 

forest classifiers [20,21]. The performance of these image analysis algorithms was massively 

improved by the advent of Deep Learning (DL), in particular by deep convolutional neural networks. 

These networks outperformed conventional image classification methods in non-medical 

applications in 2012 [22], with medical applications following shortly [23].  
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Deep Learning and Artificial Intelligence 

DL is part of the vast field of “artificial intelligence” (AI). While AI has been used to automate board 

games [24], video games [25] and other complex tasks, in the context of medicine it is mostly used 

for image analysis. This includes radiology, dermatoscopy and histopathology image analysis. In 

prognostication, DL has been shown to outperform some established risk factors in colorectal 

cancer [26–28], breast cancer [27], lung cancer [29], sarcoma [30], bladder cancer [31], glioma [32], 

mesothelioma [33] and hepatocellular carcinoma [34,35], among other tumor types. Compared to 

prognostic patterns in conventional histology slides, morphological patterns reflecting specific 

molecular alterations are generally weaker. Although typical morphological patterns are part of 

pathology textbooks for some genetic alterations (e.g. MSI in colorectal cancer [12]), many such 

links remain unclear. In 2018, a landmark study Coudray et al. surprisingly showed that multiple 

clinically relevant mutations in lung cancer are predictable from digitized H&E slides alone [29]. 

While the prediction performance in this initial publication was too low for any immediate clinical 

application, it proved the concept and sparked dozens of follow-up publications. [36–38]. Currently, 

just a little over three years after this initial publication, the prediction of molecular alterations from 

H&E has been shown to yield good results across a number of tumor types in academic studies. In 

addition to these research studies, molecular profiling from H&E slides is receiving considerable 

commercial interest. Although industrial implementation typically follows academic publication with 

a multi-year lag, it is already clear that multiple commercial entities are focusing on this field and 

are preparing to launch commercial products for molecular subtyping of tumors from digitized H&E 

slides. For example, researchers affiliated with PathAI (Boston, MA, USA) have performed a study 

on prediction of homologous recombination deficiency (HRD) from H&E [39]. Researchers from 

Owkin (New York, NY, USA) have used DL to predict molecular alterations in mesothelioma [40], 

researchers from Panakeia (Cambridge, UK) have published a pan-cancer molecular prediction 

study [41] and researchers affiliated with Histofy (Birmingham, UK) have used DL to predict 

molecular alterations in colorectal cancer [42]. These examples are not a complete list of 

commercial efforts in this field, but demonstrate that prediction of molecular alterations directly from 

H&E slides is seen as a business opportunity by many. 
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Aim of this work 

Prompted by this broad academic and commercial interest in AI-based prediction of genetic 

alterations from cancer histology, we performed a systematic review of this field. We report and 

give analytic details of studies published between 2017 and 2021 and which showed that genetic 

alterations in tumor tissues are predictable using H&E slides with AI-based methods (Figure S1). 

The search yielded 52 filtered studies, listed in Table 1, which we categorized as follows: mutation, 

tumor mutation burden (TMB), DNA damage response (MSI/HRD), gene expression, copy number 

alteration and prediction of the presence of oncogenic virus (details given in Supplementary 

Methods). 

Statistical endpoints 

Prediction of genetic alterations with DL is based on the hypothesis that the algorithms will be able 

to decipher genetically-associated morphological changes in digitized whole slide images (WSIs) 

of conventional H&E slides [29,43]. In this review, we report the most commonly used statistical 

endpoint used in these studies, the area under the receiver operating curve (AUROC). Receiver 

operating characteristic (ROC) curves plot true positive rate (TPR) (sensitivity) against false positive 

rate (FPR) (1-specificity) at every possible threshold value for decision making [44]. AUROC, 

therefore, serves as a very useful method to compare the accuracy of different models and is 

commonly used as a performance evaluation metric in DL applications [44,45]. Of note, there are 

some drawbacks to using AUROC as the only performance metric. For example, the AUROC is 

affected by class imbalance [46]. Also, an AUROC does not specify a fixed threshold or operating 

point, but this is required for clinical application [47]. Therefore, studies should also include 

additional metrics such as precision-recall curves or F1 scores. Ideally, the metrics used in a study 

should be pre-defined [48]. 
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Deep Learning for prediction of genetic alterations 

Prediction of mutations from H&E slides 

In their seminal study published in 2018, Coudray et al. developed a DL-based image analysis 

method for mutation prediction in non-small lung cancer (NSCLC), where mutations in STK11, 

EGFR, FAT1, SETBP1, KRAS and TP53 were predicted from histology with patient-level AUROCs 

of 0.85, 0.75, 0.74, 0.79, 0.81 and 0.67 on the held-out dataset (i.e. the test dataset) [29].  

While most efforts to utilize DL to predict mutations have been in tumor types for which there are 

actionable alterations, such as lung cancer, a broad spectrum of tumors has been analyzed in 

recent years. In general, it seems that not all tumor types are equally suitable for these types of 

analyses. Previous studies focused on tumor entities for which (a) lots of training data are available, 

and (b) clinical management can be informed by molecular alterations (Figure 2). Here, we review 

the available evidence on the prediction of mutations in various tumor types.  

 

In one of the studies succeeding Coudray et al., FGFR mutation status was also shown to be 

predicted in NSCLC with an AUROC of 0.72 on the held-out dataset by Wang et al. [49]. In breast 

cancer, the mutation status of germline BRCA, a biomarker that plays an important role in the DNA 

repair mechanism and genomic stability, was also found to be predictable with an AUROC of 0.77 

on an external dataset [50,51]. Similarly, detection of FGFR mutation status, which is a prognostic 

biomarker in bladder cancer, was reported in two different publications, with AUROCs from 0.63 to 

0.76 for within-cohort and external validation [52,53]. Another clinically relevant set of genetic 

alterations are mutations occurring in isocitrate dehydrogenase (IDH) enzymes, which exist in the 

majority of lower-grade gliomas and influence therapeutic decisions [54]. Jiang et al. used a DL-

based histopathology image analysis to train a neural network for the classification of mutations in 

IDH (IDH1 and IDH2) in lower-grade (stage 2 and 3) glioma from The Cancer Genome Atlas (TCGA) 

cohort and validated it on stage 4 gliomas from the same dataset, which achieved high performance 

(AUROC of 0.81) [55]. When the whole TCGA glioma dataset regardless of tumor stage was used 

to build a model, the AUROC in this study reached 0.84. 



 

 

Mutations in the BRAF gene were predictable when a DL model was trained on tissue microarrays 

(TMA) in thyroid cancer and tested on WSI from the independent TCGA thyroid cancer dataset with 

an AUROC of 0.98, proving the transferability of the method from TMA to WSI [56]. When the model 

was trained and tested within the TCGA thyroid cancer dataset, the AUROC was 0.95 for BRAF 

mutation prediction and 0.88 for RAS mutation prediction [57]. Mutations in BRAF and NRAS 

oncogenes were also discovered to be distinguishable with DL models in melanoma, with AUROCs 

of 0.83 and 0.92, respectively [38]. In uveal melanoma, the presence of BAP1 mutation has 

achieved comparable performance to pathologists, with AUROCs up to 0.99 on the held-out 

datasets [58,59]. Likewise, BRAF mutations are predictable by DL in colorectal cancer, as shown 

by multiple studies [28,60,61]. In addition, in colorectal cancer, mutations in a panel of clinically 

relevant mutations in APC, KRAS, PIK3CA, SMAD4, and TP53 were predictable from conventional 

histology in several studies [28,62,63]. Moreover, pan-cancer studies analyzing dozens of cancer 

types at once have further supported the potential of DL-based tools in genetic alteration prediction 

tasks [37,61,64].  

 

We found only single studies published in the field of DL-based mutation prediction in hematological 

neoplasms and in endometrial, ovarian and prostate cancers, respectively. Brück et al. used bone 

marrow histopathology images to detect important genetic features in myelodysplastic syndrome 

and myeloproliferative neoplasm to predict mutations in genes regulating cell cycle, cell 

differentiation, DNA chromatin structure and RAS pathway and mutations in IDH1, IDH2, NRAS, 

KRAS, and spliceosome [65]. In endometrial cancer, polymerase ε (POLE) ultra-mutated, MSI-high 

hypermutated, copy-number low (CNV-L), copy-number high (CNV-H) subtypes and the mutation 

status of 18 endometrial carcinoma-related genes were predictable using histopathology images 

as input [66]. Zeng et al. developed a method that detects BRCA1 and BRCA2 mutations with 

AUROC values of 0.95 and 0.91 respectively on the held-out dataset in high-grade serous ovarian 

carcinoma, and also showed that integrating genomics, transcriptomics and proteomics data with 

the image features leads to better prognostic models compared to images alone [67]. While prostate 



 

cancer is one of the most frequent tumor types in males, computational pathology studies have 

mainly focused on tumor detection, rather than molecular characterization [68,69]. This could be 

due to the lack of clinically actionable molecular alterations in this tumor entity. The only study in 

prostate cancer aimed to predict SPOP mutations, which associate with a better therapeutic 

response, resulting in an AUROC of 0.86 on an external dataset [43,70].  

 

Together, these findings show that DL can predict a range of clinically relevant mutations directly 

from H&E slides in multiple tumor types. Work across different tumor types is likely to expand with 

the emergence of new predictive biomarkers in the future. The current evidence has the principal 

limitation that the classification performance in almost all cases is still considerably lower than gold 

standard methods. Nevertheless, by choosing a high-sensitivity low-specificity operating point, 

these methods could be used as pre-screening tools for rare mutations.  

Tumor mutation burden 

Tumor mutation burden (TMB) is defined as the number of somatic mutations accumulated within 

the tumor cells, which has been associated with prognosis and response to therapy response 

[71,72]. Thus, TMB is strongly correlated with immunogenicity due to the increased likelihood of 

neoantigen presence on the surface of tumor cells with a high TMB [73,74]. Neoantigens are the 

antigens that are found only on the cell surface of tumor cells produced by somatic mutation; hence, 

they evoke a T-cell response and are highly immunogenic [75,76]. Although not all mutations 

produce neoantigens, with the increase in the mutational load as in the case of cells with high TMB, 

the likelihood of the presence of neoantigens increases [73]. Consequently, high TMB is an FDA-

approved biomarker for immune checkpoint inhibitors [77]. Due to the fact that TMB tumors are 

inflamed, and possibly due to other morphological changes, multiple studies have shown that it is 

possible to infer TMB from H&E histology [78–82]. The first attempt to predict TMB status from 

WSIs was made by Zhang et al. in 2019 [80], where TMB-low and -high groups were targeted on 

histopathology images from patients with liver cancer. This study reported an AUROC of 0.95 on 

the validation dataset and showed that TMB prediction by the model outperformed a model based 



 

on next-generation sequencing (NGS) [80]. Similarly, TMB status has been shown to be predictable 

as a binary classification task on urothelial bladder carcinoma, with AUROC of 0.75 [79], and lung 

adenocarcinoma, with AUROC of 0.74 and 0.71 by cross-validated analyses [79,82]. By utilizing 

predictive TMB scores in survival outcome prediction, Xu et al. reinforced the prognostic value of 

TMB [79]. While these studies focused on developing methods for binary classification of TMB 

status as high and low, Marostica et al. performed a regression task for TMB prediction on clear 

cell renal cell carcinoma, meaning that the model is built to predict the TMB score itself, and found 

the Spearman correlation coefficient of 0.419 on the held-out test dataset [81]. 

 

TMB measurement has faced many challenges in clinical decision-making due to costly NGS-based 

tests, limited tissue availability and intratumor TMB variation [79,80]. The publications in the context 

of TMB prediction, therefore, have great potential for clinical decision-making. All studies reviewed 

here, however, lack an external test dataset, which is a prerequisite for moving towards clinical 

application [48]. 

 

Defective DNA repair mechanisms: MSI and HRD 

The mismatch repair system and the homologous repair system are two biologically and clinically 

relevant ways of cells to repair DNA damage. Deficiencies in either of these systems can render 

solid tumors susceptible to specific treatment types.  

 

Microsatellites are the genomic regions consisting of short tandem repeats that are highly 

susceptible to built-up replication errors in the presence of deficient mismatch repair (dMMR) 

leading to the MSI phenotype [83]. In some tumor types, such as colorectal, gastric and endometrial 

cancer, MSI is the most important determinant of immunogenicity. This is associated with a high 

TMB, increase in infiltrating lymphocytes and immunogenic neoantigens expressed due to 

frameshift mutations found in MSI-high tumors [84–86]. Therefore, high MSI status is approved as 

a biomarker in many solid tumors for immunotherapy [84,87]. Even before the DL era, pathological 
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predictors of MSI in colorectal cancer were known [12]. Consecutively, it was demonstrated that DL 

can predict MSI status from histology as well [28,36,66,88–95]. When a DL system is trained on 

thousands of patients, the predictive power is superb and can reach AUROC of above 0.95 [62,89] 

and a recent head-to-head comparison showed DL outperforms pathologists [94]. In ovarian 

cancer, the predictive power of DL models is comparatively much higher, as they reached AUROC 

values of 0.92 in the held-out test datasets, where the sample size was 114 with the model fed with 

a training dataset of 115 patients [67]. Newer technologies such as multiple instance learning (MIL) 

and self-supervised learning (SSL) have improved classification performance by more than 10% 

compared to the conventional WSI classification model with a sample size as low as 100 patients 

in colorectal cancer [93]. Schrris et al. showed that the performance of the MSI classifier can reach 

above 0.90 in colorectal cancer by combining SSL with an attention-based DL model [93].  

 

Homologous recombination deficiency (HRD), like MSI, is an indicator of a defect of DNA damage 

repair mechanisms. Homologous recombination is one of the mechanisms within the cell cycle to 

repair double-stranded DNA breaks, ensuring genomic integrity [96,97]. Tumor cells with HRD show 

increased base excision repair/single-strand break repair (BER/SSBR) pathways that rely on poly 

(ADP-ribose) polymerase proteins (PARP) as essential components to cope with DNA damage 

[98,99]. Identification of HRD in tumors has clinically relevant importance as therapeutic options 

targeting PARP activity exist for breast, ovarian, pancreatic and prostate cancer [97]. The studies 

that try to predict HRD from WSIs via DL algorithms focused primarily on breast cancer, where the 

classification of HRD-deficient and HRD-proficient patients were initially predicted with an 

approximate AUROC of 0.70 [100,101]. Further, Diao et al. demonstrated that binarized HRD score 

prediction was possible with AUROCs of 0.77 and 0.68 in breast and gastric cancer respectively 

on held-out datasets by a model using human interpretable features [101]. When SSL-based DL 

approaches were utilized, the model performance peaked as was also shown in MSI prediction, 

and AUROC values over 0.80 were reached [93,102].  
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In summary, the performance of DL systems to predict MSI status is very high. This could be one 

of the first biomarkers to enter the diagnostic routine [103]. Nevertheless, regulatory approval of 

these systems may require additional validation studies.  

 

Gene expression and copy number alterations 

All previously discussed methods are weakly supervised: The DL classifiers use a class for the 

entire whole slide image, but process the image in small patches, or tiles. When the classifier is 

deployed, tile-level predictive scores are aggregated into the patient-level prediction score. These 

methods essentially lack spatial resolution. To tackle this challenge, He et al. developed an 

algorithm where the DL model predicted the expression of over 200 genes for each tile in breast 

cancers and validated their results on an external dataset [104]. The model in this research, trained 

with tiles labeled with spatial transcriptomic data, was able to predict breast cancer biomarkers with 

good accuracy while shedding light on the intratumor heterogeneity in terms of targeted gene 

expression. 

 

Gene expression prediction on histopathology images has also been possible by research where 

patient-level expression was integrated into the DL analysis. Schmauch et al. introduced a 

framework that fed the DL model with WSI tiles labeled with bulk normalized RNA sequencing data 

per slide and predicted the slide-level gene expression scores in hepatocellular carcinomas and 

invasive breast carcinomas [90]. The well-predicted gene expressions by this approach were 

observed to be involved in the pathways peculiar to both cancers. Similarly, binarized (high versus 

low) gene expressions quantified by RNA sequencing values per slide were predicted in the study 

by Diao et al. [101]. In this study, the model achieved AUROCs greater than 0.65 for prediction of 

PD-1, PD-L1, CTLA-4 and TIGIT binarized expressions in several different cancer types. Another 

pan-cancer study by Kather et al. [61] investigated the prediction of gene expression profiles from 

conventional histological images, reaching a high performance especially for immune-related gene 

expression signatures. Similar results were reached by Fu et al. in another pan-cancer study [37]. 



 

Woerl et al. performed a classification task for molecular subtypes of urothelial bladder carcinoma 

with a superior accuracy, where the subtypes were determined by gene expression data and 

assigned to the WSI labels [105]. Similarly, in colorectal cancer, DL is able to predict consensus 

molecular subtype from conventional images [106]. In all these bulk expression prediction tasks, 

spatial expression values are inferred after the analysis is performed.  

 

Copy number variations, which are correlated to gene expression in cancer [106], have also been 

predicted from H&E images with DL. In a study performed by Qu et al., point mutations in NOTCH1 

and TP53 genes as well as copy number alteration (CNA) status in the FGFR1 gene in lung 

adenocarcinoma, and point mutations in RB1 and NF1 and TGFβ2 CNA in liver cancer were 

predicted. Of note, the underlying DL model was trained on a breast cancer dataset, showing the 

partial transferability of the DL models between different organs [108]. The main focus of this study 

was the prediction of point mutations and CNAs in important genes such as TP53 and FGFR, where 

the model achieved AUROC greater than 0.65 for six genes in both categories. FGFR mutation 

status was also shown to be predicted in NSCLC with an AUROC of 0.72 on the held-out dataset 

[108]. Other studies on external datasets in liver cancer have also shown that CTNNB1, FMN2, 

TP53, and ZFX4, ALB, CSMD3, MUC4, OBSCN, and RYR2 can be detectable from WSI [109,110]. 

Furthermore, Marostica et al. used DL methods to predict CNA status in several genes associated 

with prognosis and with a high prevalence in kidney cancer [81].  

 

In summary, the potential of DL to predict gene expression status and CNA might be clinically useful 

because gold standard methods can be costly and are not ubiquitously available. Still, as we 

discuss below, validation studies are needed to determine the clinical utility of these approaches. 

 

Biomarker expression 

Immunohistochemistry (IHC) is a histopathological method that is being used to ascertain the 

amount and distribution of specific antigens within a tissue and is commonly used in diagnosis tasks 
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in cancer [111]. IHC plays an important role in treatment decisions and outcome prediction in breast 

cancer pathology, as molecular subtypes are determined based on IHC for the biomarkers estrogen 

receptor (ER), human epidermal growth factor receptor 2 (HER2) and progesterone receptor (PR) 

[112,113]. Anand et al. developed a DL algorithm to predict overexpression of HER2 from H&E-

stained slides and validated it on an external dataset, achieving AUROC of 0.76 [114]. HER2 

overexpression is associated with a poor prognosis in gastric cancer as well as breast cancer 

[115,116] and HER2 status was predicted in a within-cohort analysis in gastric cancer 

histopathology dataset [117]. Shamai et al. developed a DL-based method for the prediction of 19 

relevant biomarkers, among which ER, HER2 and PR were reported to be at least as precise as 

IHC [118]. In another study by Couture et al. [119], the accuracy of ER status prediction was 

reported as 0.84 in a within cohort analysis. Similarly, Kather et al. reported good predictability of 

ER, PR and HER2 status in breast cancer from H&E histology as part of a pan-cancer analysis [61]. 

Overexpression of programmed death-ligand 1 (PD-L1) is another clinically relevant phenomenon, 

for example in lung cancer [120], and Sha et al. predicted PD-L1 status with an AUROC of 0.8 in 

the held-out dataset in NSCLC [121].  

 

Together, these studies demonstrate the potential of AI to predict overexpression of clinically 

relevant genes directly from H&E histology, which could potentially be used as a rapid pre-screen 

before IHC is performed. 

 

Presence of Oncogenic Virus 

Oncogenic viruses, i.e. Epstein-Barr virus (EBV), human papillomaviruses (HPVs), hepatitis B and 

C viruses (HBV and HCV), human T cell lymphotropic virus-1 (HTLV-1), Kaposi’s sarcoma 

herpesvirus (KSHV), and Merkel cell polyomavirus (MCPyV) cause 15-20% all cancers [122,123]. 

While they all share the ability to express oncogenic proteins that deteriorate the pathways that 

lead to cell cycle arrest and apoptosis, they act through their unique and various molecular 

processes in different tissues [123]. Therefore, viral oncogenesis has a significant impact on 
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diagnosis in the clinic. While the detection of oncogenic virus varies for different species of viruses 

and tissue types [124], attempts to detect it using DL-based computational methods have been 

successful. Kather et al. showed for the first time in 2019 that the presence of EBV in gastric cancer 

and HPV in head and neck cancer were detectable, with AUROCs of 0.81 and 0.70 on the external 

test datasets [125]. Klein et al. also developed a DL algorithm that stratifies patients according to 

the presence of HPV in oropharyngeal squamous cell carcinoma cancer with an AUROC of 0.8 in 

two independent datasets [126]. EBV-associated tumors constitute a distinct molecular subtype of 

gastric cancer that is associated with better prognosis [127]. Due to the prevalence and high 

mortality rate of gastric cancer, EBV detection is imperative in clinical decision-making. EBV 

detection in gastric cancer via DL approaches was detectable with an AUROC of 0.85 on five 

external test datasets from Germany and Italy [91]. Furthermore, when EBV prediction was 

performed on TCGA gastric cancer cohort, the AUROC was measured as 0.85 for the held-out 

dataset [128]. They also demonstrated that cases with higher predictive EBV scores are associated 

with a better prognosis [128]. 

 

These studies show that DL could shed light on the viral etiology of tumors, which is in some cases 

relevant for patient management.  

 

Perspectives and outlook 

Quality control and preprocessing protocols 

The data being used in computational pathology i.e. digitized histopathology images, can be 

obtained and prepared through a variety of ways, which has to be taken into account during the 

analysis. Sample preprocessing workflows are important for DL models [129]. Formalin-fixed 

paraffin-embedded (FFPE) sections are the most common tissue samples in histopathology, 

resulting in high-quality images that may take days to be prepared, while frozen sections are the 

tissue samples that are obtained in urgent situations for a rapid overview of the tumor, providing 

https://paperpile.com/c/PMIpgB/pB7E
https://paperpile.com/c/PMIpgB/lupv


 

images within less than an hour, albeit being more prone to the artifacts and disturbances in 

morphology [130,131]. Most DL studies use FFPE sections [61], but some studies have 

demonstrated good performance on frozen sections [37]. Also, most studies use surgical resection 

specimens, which yield large contiguous areas of tumor tissue on a slide [132]. A few studies have 

compared the performance of DL systems applied to biopsy samples [47,89] or virtual biopsies [92] 

and found a decline of predictive performance. In the future, as DL classifiers are moving towards 

implementation in clinical routines, it is essential to specify for each classifier which sample types it 

was trained on and validated on. 

 

The classical patch-based weakly supervised approach 

Histological images are large and have to be tessellated before processing because the size of the 

WSI is too large [133]. The initial study by Coudray et al. [29] established a simple yet powerful 

workflow for the prediction of molecular alterations from such WSIs: the “patch-based” weakly 

supervised workflows (“vanilla workflow”). In this approach, histopathological images are cut into 

tiles. These tiles are processed separately with a convolutional neural network (CNN). Some 

studies have investigated the best CNN architecture for such tasks, with residual networks 

(“resnets”) giving a good tradeoff between performance and computational effort [61,134]. Some 

studies have opted to train a CNN [61], while others have used CNNs to extract “features” and 

trained classifiers on these features [37]. The results of these approaches are typically similar [135]. 

In all approaches, tile-level predictions are ultimately pooled for each slide by some type of 

averaging [133]. In general, these weakly supervised workflows are efficient because they only 

require a single ground truth for the whole slide. This saves the time of experts and allows 

morphological features not yet known to be incorporated into the decision-making process 

[27,92,136] Initially, many studies used manual tumor annotations (outlines, masks) before the 

actual DL process [29,36]. However, subsequent work has shown that this is not strictly necessary; 

even the classical patch-based approach performs fairly well without any manual annotations 

[37,61,92]. 

https://paperpile.com/c/PMIpgB/2Lva
https://paperpile.com/c/PMIpgB/C3E2


 

 

Transition towards new technologies 

While the classical patch-based approach is still used in some recent studies, others have proposed 

other solutions for the problem of pooling tile-level predictions. In particular, multiple instance 

learning (MIL) is now commonly utilized in this field due to its high efficiency in weakly supervised 

settings [68,93,137]. The MIL framework considers the tiles as instances and predicts target labels 

on the bags that are made up of instances coming from WSIs of the same patients [138,139]. While 

the naive MIL approach is sensitive to artifacts and outliers, attention-based MIL is more robust. 

Attention MIL learns the contribution of individual tiles in the decision-making process [137,140]. 

Most recently, transformers and graph neural networks that are intrinsically trained with the 

correlation information between different tiles along with the tile images have been proposed 

[134,141–143]. Another approach that is becoming more and more common in DL systems in 

histopathology is contrastive SSL, a subset of unsupervised learning [93,102,144,145]. In 

contrastive self-supervised training, the model learns the patterns in a dataset in the absence of 

any labels by contrasting different images and rewarding similar images; therefore, it is aimed to 

obtain better representations of images [146,147]. SSL-based models can combat the scarcity of 

labeled data and reduce the required sample size, which weakly-supervised methods often suffer 

from [93]. In summary, the pace of technical innovation in computational pathology is very high and 

further performance gains due to technical improvements can be expected in the next few years. 

 

Interpretability and explainability 

A typical neural network used for image analysis can have up to dozens of millions of parameters, 

which makes it practically impossible to track the steps of an algorithm or understand why the 

decision being made was made by human experts. Neural networks are consequently referred to 

as "black boxes" [148]. This feature brings about potential risks in DL methods, such as biases in 

the decision-making process going undetected. Hence, explainability, that is, understanding why 

https://paperpile.com/c/PMIpgB/X7zf+QJdJ
https://paperpile.com/c/PMIpgB/oOR8


 

the model works the way it does, is often a part of DL studies in computational pathology [147]. 

Another term in this niche, interpretability, on the other hand, describes the side of human 

understanding of how an AI model works [149]. More interpretable models are simpler models with 

a small number of parameters so that people can easily follow the decision-making. Since more 

complex and more opaque models arguably lead to better accuracy, it is justified to state that there 

is an arms race between interpretability and accuracy [150,151]. While it is debated if interpretability 

and explainability are an absolute requirement for AI in medicine, there are two important benefits 

in histopathology by making AI systems explainable. First, it can serve as a tool that helps clinicians 

to verify that the model has learned reasonable, previously known, morphological features [151]. 

Second, new features can be discovered, potentially yielding new mechanistic insight [152–154]. 

Both aspects can also help to reduce reservations and fears towards AI applications in medicine. 

Commonly used interpretability methods in digital pathology research are heat maps, class 

activation maps, t-distributed stochastic neighbor embedding (t-SNE) plots and generation of top 

predicted patients and tiles [30,37,155,156]. This has been used to detect previously unknown 

patterns: For instance, Brockmoeller et al. showed that the deep learning model trained to detect 

colorectal cancer tissues with lymph node metastasis based its predictions significantly on inflamed 

fat tissue [153]. In a study by Loeffler, the heat maps that are generated to reflect the decision of 

the DL model on each tile distinguish between a tumor area with an FGFR3 mutation and the wild 

type, confirming the model has learned clinically important features in the decision making [52]. 

Future studies could therefore use DL to discover novel morphological-molecular associations.   

 

Inference of tumor clonality and spatial heterogeneity 

Intratumor heterogeneity is an intrinsic feature of cancers that represents the spatial and temporal 

variations of cell populations within the same tumor [157]. This variation inside the tumor eventually 

becomes the driving force for natural selection under the pressure of the cancer therapies and might 

lead to resistant cells surviving, thereby reducing treatment effectiveness [158,159]. Hence, a better 

understanding and assessment of intratumor heterogeneity could improve therapeutic approaches. 



 

One of the key benefits of DL-based prediction of genetic alterations is that predictions are spatially 

resolved even if the ground truth data are not. This means that it is possible to map the prediction 

scores of different tiles onto the WSI. Such an opportunity allows experts, first, to understand the 

decision process within the machine that is critical for the clinic and the legal perspectives and, 

secondly, to make inferences about tumor heterogeneity. It has been shown that such DL-based 

spatial heterogeneity reflects an underlying genetic heterogeneity in bladder cancer [52,104]. 

Specifically, DL has also been used to uncover genetic heterogeneity on a fine-grained level in lung 

cancer [160] and other tumors [161]. Moreover, the intratumor heterogeneity index based on gene 

expression scores predicted by DL is used to estimate patient survival outcomes on breast and 

lung cancers, where the association between intratumor heterogeneity and poor survival has been 

shown once again [162]. 

 

Limitations 

The major limitation of most studies is the low performance relative to the gold standard. At the 

moment, DL prediction of genetic biomarkers can be achieved with an AUROC of up to ~0.8 (Table 

1). A few notable examples include MSI status - which is known to have a strong morphological 

correlation [94] and readily available training datasets [47]. It is possible that with larger cohorts, 

prediction of other biomarkers will also approach or exceed an AUROC of 0.9, but this will require 

future efforts to collect such datasets.  

A fundamental limitation of AI in medicine is the generally low level of evidence. As Kleppe et al. 

pointed out, few studies provide an unbiased performance estimation (Level III study according to 

Kleppe) and an unbiased estimation of medical utility (Level IV study) [48]. In particular, lack of 

external validation is a challenge for DL-based analysis in cancer research. Without external 

validation, it is not possible to assess the true performance of the developed model as it will never 

have been tested on data that it had not encountered while training. Moreover, both external and 

training datasets must be chosen in a way that they represent the target patients as well as possible 

so that overfitting is prevented while ensuring the generalizability of the model. Confounders are 



 

also a relevant problem, especially for studies that overwhelmingly rely on TCGA data [161]. Site-

specific signatures such as differences in staining techniques, scanners and/or the population 

distribution of the hospital submitting the histological dataset become an important confounder 

within this research, where some genetic targets predicted using TCGA data of several cancer 

types became unpredictable when the training was held in a site-preserved manner [163].  

 

Implementation in routine workflows 

Unlike radiology, histopathology departments across the world are still largely based on handling 

glass slides, as opposed to digital images. This will conceivably change in the next few years and 

indeed a fully digital workflow is a prerequisite for useful integration of DL in daily routine. On the 

other hand, DL is also a tangible incentive to digitize routine workflows. If DL can pre-screen 

samples for genetic alterations, and thus reduce the total load of molecular testing, this could yield 

a quantifiable value that justifies the investments into a digital infrastructure. In addition, if DL can 

improve patient outcomes (i.e. by improving response prediction), this would also be a strong 

argument for such investments. Therefore, in the next few years it will be important to perform 

rigorous studies aimed at providing strong evidence for DL reaching hard endpoints such as cost 

savings and patient outcomes. Another requirement is the regulatory approval of DL systems, for 

which broad validation and explainability of new biomarkers are helpful. If this succeeds, DL will be 

the pivotal reason for digitalization which the digital pathology community has been waiting for since 

the 1990s.  
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Figure legends 

Figure 1: Prediction of molecular alterations from conventional histopathology is a 

frequently studied task. (A) An overview of deep learning-based AI frameworks in 

histopathology. (B) Numbers of relevant publications over time. (C) Proportions of genetic 

alterations reviewed in this study. The numbers next to genetic alteration categories represent the 

number of publications found by the literature search. Some publications were assigned to 

multiple categories. 52 unique publications were included in our study. The cutoff date for the 

quantitative analysis was 28th December 2021. Icon source: Flaticon.com 

 



 

Figure 2: Analysis of primary tumor site in molecular prediction studies. (A) Distribution of 

the publications based on tumor type. (B) An illustration of the distributions of tumor types in the 

body. Icon source: Flaticon.com 



 

Table 1: The publications that studied the genetic alteration detection by AI and are used in this review categorized by the tumor/organ 
type. 

Tumor 
Type Citation Year Prediction 

Category Target External validation 
AUROC Technology 

Bladder 

 [78] 2019 TMB TMB N/A CNN, MIL 

 [105] 2020 Gene expression DN (double negative), basal, luminal and luminal p53-like 
subtypes of bladder cancer N/A CNN 

 *[79] 2020 TMB TMB N/A 
SVM classifier with 
RBF and linear 
kernels 

 [52] 2021 Mutation  FGFR3 AUROC=0.63 CNN 
 [53] 2021 Mutation FGFR N/A CNN 
Brain 
 [164] 2020 Mutation IDH1 N/A CNN, MIL 
 [55] 2021 Mutation IDH (derived from IDH1 and IDH2 status) N/A CNN 

Blood 

 [65] 2021 Mutation 
Mutations in cell cycle, cell differentiation, DNA 
chromatin structure, RAS pathway IDH1, IDH2, NRAS, 
KRAS and spliceosome genes 

N/A VGG16 and 
Xception CNNs 

Breast 

 [119] 2018 Overexpression ER  N/A CNN 

 [118] 2019 Overexpression 19 biomarkers N/A 

Morphological-
based molecular 
profiling: logistic 
regression and CNN 

 [114] 2020 Overexpression HER2   AUROC=0.76 CNN 
 [104] 2020 Gene expression Expression of 250 genes  AUROC =0.73 DenseNet-121 CNN 

https://paperpile.com/c/PMIpgB/BvjZ
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https://paperpile.com/c/PMIpgB/eXQe
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(average AUROC of 
gene prediction as 
high or low) 

 *[100] 2020 DDR HRD  AUROC=0.70 CNN, MIL, RNN 

 [102] 2021 DDR HRD N/A Momentum contrast, 
CNN, MIL 

 *[93] 2021 DDR HRD N/A SimCLR, CNN, MIL 

 *[108] 2021 CNA, mutation 
CNA status in FGFR1, EIF4EBP1, KAT6A, HEY1, 
ZNF217, and RAB25; mutation in RB1, CDH1, NF1, 
NOTCH2 

N/A 
 CNN 

 [51] 2021 Mutation gBRCA  AUROC= 0.77 CNN 

Colorectal 

 *[36] 2019 DDR Mismatch repair deficiency  AUROC=0.84 CNN 
 [88] 2020 DDR Mismatch repair deficiency  AUROC=0.85 CNN, MIL 
 [89] 2020 DDR Mismatch repair deficiency  AUROC=0.96 CNN 

 [62] 2021 DDR, mutation Mismatch repair deficiency, TP53 and BRAF mutations 
 AUROC=0.98 (MSI), 
 AUROC=N/A (TP53 
and BRAF) 

CNN, HoVer-Net 

 [63] 2021 Mutation APC, KRAS, PIK3CA, SMAD4 and TP53 

 AUROC=0.65 
(APC), AUROC=0.58 
(KRAS), 
AUROC=0.57 
(PIK3CA, 
AUROC=0.65 
(SMAD4), 
AUROC=0.78 (TP53)  

CNN 

 [91] 2021 DDR Mismatch repair deficiency  AUROC=0.97 Inception-v3 CNN 
 *[93] 2021 DDR Mismatch repair deficiency N/A SimCLR, CNN, MIL 

 [28] 2021 DDR, mutation Mismatch repair deficiency, BRAF and KRAS mutations 
 AUROC=0.90 (MSI),  
 AUROC=N/A (BRAF 
and KRAS) 

ShuffleNet CNN  

 [106] 2021 Gene expression Consensus molecular subtype  AUROC= 0.85 (in Inception CNN 

https://paperpile.com/c/PMIpgB/Vd37
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https://paperpile.com/c/PMIpgB/oOR8
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TCGA dataset), 
AUROC=0.85 (on 
GRAMPIAN dataset) 

 [94] 2021 DDR Mismatch repair deficiency  AUROC=0.779 MobileNetV2 CNN 

Endometrial 

 [66] 2021 CNA, DDR 
POLE ultra-mutated, MSI-high hypermutated, CNV-L, 
CNV-H subtypes; mutation status of 18 endometrial 
carcinoma-related genes 

N/A Inception CNN 

Gastric 

 [117] 2017 Overexpression HER2 N/A CNN 
 *[36] 2019 DDR Mismatch repair deficiency  AUROC=0.75 CNN 
 *[100] 2020 DDR Mismatch repair deficiency  AUROC=0.81 CNN, RNN 

 [92] 2021 DDR, oncogenic 
virus Mismatch repair deficiency; Epstein-Barr virus 

 AUROC=0·86 (MSI), 
AUROC=0.86 (EBV)  
(highest AUROC 
among several 
external datasets) 

ShuffleNet CNN 

 [128] 2021 Oncogenic virus Epstein-Barr virus  N/A  

Head and neck 

 [125] 2019 Oncogenic virus Epstein-Barr virus and human papilloma virus  
 AUROC=0.81 
(EBV), AUROC=0.70 
(HPV) 

CNN 

 [126] 2021 Oncogenic virus Human papillomavirus  
 AUROC=0.8 (on two 
independent cohorts 
separately) 

U-Net, DenseNet 
CNN 

Kidney 

 [81] 2021 CNA, TMB CNA status of clinically important genes; TMB - CNN 

Liver 

https://paperpile.com/c/PMIpgB/BWGK
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 [80] 2019 TMB TMB N/A  

 [109] 2020 Mutation CTNNB1, FMN2, TP53, and ZFX4 

** 
AUROC=0.90 
(CTNNB1), 
AUROC=0.74 
(FMN2), 
AUROC=0.77 
(TP53), 
AUROC=0.72 (ZFX4) 

Inception CNN 

 [110] 2020 Mutation ALB, CSMD3, CTNNB1, MUC4, OBSCN, TP53 and 
RYR2  

** 
 AUROC=0.73 (ALB), 
AUROC=0.75 
(CSMD3), 
AUROC=0.63 
(CTNNB1), 
AUROC=0.63 
(MUC4), 
AUROC=0.74 
(OBSCN), 
AUROC=0.69 
(TP53), 
AUROC=0.80 
(RYR2) 

CNN 

 *[108] 2021 CNA, mutation  CNA status in TGFβ2; mutation in RB1 and NF1 N/A CNN 

Lung 

 [29] 2018 Mutation STK11, EGFR, FAT1, SETBP1, KRAS and TP53 N/A  
 [121] 2019 Overexpression PD‑L1  N/A CNN 

 [49] 2020 Mutation EGFR AUROC=0.72 Deep learning, not 
specified 

 *[79] 2020 TMB TMB N/A 
SVM classifier with 
RBF and linear 
kernels 

 [82] 2021 TMB TMB N/A Inception CNN 
 *[108] 2021 CNA, mutation CNA status in FGFR1; mutation in TP53 and NOTCH2 N/A CNN 

https://paperpile.com/c/PMIpgB/KYF4
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https://paperpile.com/c/PMIpgB/YLc9
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Ovarian 

 [67] 2021 DDR,mutation Mismatch repair deficiency; BRCA1 and BRCA2 
mutations N/A CellProfiler 

Pan-cancer 

 [37] 2020 CNA, mutation, 
gene expression 

Whole-genome duplications, copy number alterations, 
driver gene mutations, gene expression - PC-CHiP (using 

CNN) 

 [61] 2020 

DDR, gene 
expression, 
mutation, 
overexpression 

Genetic variants, oncogenic drivers, molecular subtypes 
and gene expression signatures, status of hormone 
receptors 

- CNN 

 [64]  2020 Mutation TP53 - CNN 

 [90] 2020 DDR, gene 
expression 

Mismatch repair deficiency; expression of 30,839 
(coding/noncoding) genes - HE2RNA 

 [101] 2021 DDR, gene 
expression 

PD-1, PD-L1 and CTLA-4 (cytotoxic T-lymphocyte-
associated protein) expressions, HRD score and TIGIT 
(T cell immunoreceptor with Ig and ITIM domains) 
expression 

- CNN 

Prostate 

 [43] 2018 Mutation SPOP  AUROC=0.86 CNN 

Skin 

 [38] 2019 Mutation BRAF and NRAS N/A Inception CNN 
 [58] 2019 Mutation BAP1 (BRCA1-associated protein 1)  N/A DNN 
 [59] 2021 Mutation BAP1 (BRCA1-associated protein 1)  N/A CNN, MIL, CLAM 

Thyroid 

 [57] 2019 Mutation BRAFV600E and RAS N/A Inception CNN 

 [56] 2021 Mutation BRAFV600E  AUROC=0.98 VGG16 CNN, DNN, 
MIL 

https://paperpile.com/c/PMIpgB/7SuN
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https://paperpile.com/c/PMIpgB/2Lva
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The references to these studies are given along with the publication year, the category of genetic alterations in which the study falls, the predicted 

targets, the performance of the model and the AI technology being used in each publication. *Duplicate entries that studied multiple types of 

cancer. The performances of pan-cancer studies and the studies with more than seven targets were not given due to the limited area. **Predictions 

are made with two methods, based on average predicted probability and summarizing the percentage of positively classified of the patches from 

the slides. The selected AUROCs reported here are calculated based on the average predicted probability of the predictions. CNA, copy number 

alteration; DDR, DNA damage response; TMB, tumor mutation burden.
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