
Review ARticle
https://doi.org/10.1038/s42255-021-00501-9

1Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria. 
2Institute of Molecular Immunology and Experimental Oncology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany. 
✉e-mail: herbert.tilg@i-med.ac.at

NAFLD affects up to 25% of the world’s population, repre-
senting the most prevalent liver disease1. This disease pres-
ents with varying phenotypic aspects ranging from simple 

steatosis to non-alcoholic steatohepatitis (NASH), fibrosis, liver cir-
rhosis and hepatocellular carcinoma. In the majority of patients with 
NAFLD, liver histology is characterized by simple steatosis, whereas 
up to 30% of patients exhibit inflammation and/or fibrosis1. Patients 
with NAFLD and simple steatosis but especially with NASH or liver 
fibrosis develop long-term complications that result in increased 
mortality2, mostly from cardiovascular diseases and malignancies3. 
Medical therapy remains an unmet need for NAFLD4,5, which is 
partly reflected by the strong need for liver transplantation for this 
disorder in the US and Europe6.

Whereas obesity and related disorders are by far the most common 
conditions associated with NAFLD, this disease can also be observed 
in lean individuals7. Hepatic steatosis occurs after exposure to various 
hepatotoxins (for example, drugs such as amiodarone, corticosteroids, 
tamoxifen and many others), consequent to infection or in genetic liver 
disorders, indicating that hepatic steatosis reflects a response toward 
hepatic stressors. Another stressor that was recognized early is type 2 
diabetes (T2DM), a major risk factor for NAFLD8. As obesity and met-
abolic dysfunction remain key clinical features of NAFLD, a new name 
has recently been proposed: metabolic-associated fatty liver disease9,10. 
A consensus on an appropriate definition of metabolic-associated 
fatty liver disease is challenging11, because the pathophysiology is 
complex and involves heterogeneous exogenous cues, including nutri-
tional factors and lifestyle, and endogenous cues, such as lipogenesis, 
lipotoxicity, insulin resistance, cell death and an altered gut micro-
biome12. Collectively, these cues converge on induction of systemic 
chronic organ inflammation, which particularly fuels many features 
of NAFLD13. Furthermore, various genetic variants influence the risk 
for developing NAFLD as, for example, evidenced by an association 
of a single-nucleotide polymorphism (rs738409, I148M) in PNPLA3 
(encoding the lipid droplet protein patatin-like phospholipase 
domain-containing protein 3) with severity of NAFLD14.

Current knowledge indicates that pathophysiology of this dis-
ease is focussed mainly on metabolic dysfunction and lipotoxicity. 
In this article, we will discuss three (in our opinion) cornerstones of 
the pathophysiology of NAFLD: metabolic dysfunction, altered gut 
microbiome and dysregulated innate and adaptive immunity. We 
propose a concept for how metabolic perturbation, dysbiosis and 
liver-damaging immunity establish a self-amplifying vicious circle 
in NAFLD and how this crosstalk fosters evolution toward NASH 
and complicated NAFLD.

Metabolic dysfunction in NAFLD
Metabolic dysfunction such as hepatic steatosis is considered an 
important early step in the pathogenesis of NAFLD. Accumulation 
of liver fat, which is most commonly observed in cases of obe-
sity or T2DM, not only constitutes a first hit in this disease, but  
toxicity exerted by certain lipids might also drive important fur-
ther steps of this disease such as inflammation, liver injury and 
insulin resistance.

Obesity and T2DM: key underlying disorders in NAFLD
It is now well established that NAFLD is accompanied by metabolic 
dysfunction, obesity and obesity-related disorders such as T2DM 
in >90% of patients15. The global obesity pandemic, which has 
occurred over the past 3 decades, paved the way for this dramatic 
increase in NAFLD4. The obesity pandemic has been parallelled by 
overconsumption of (hidden) calorie-enriched food, such as sweet-
ened beverages and fructose-enriched corn syrup, oversized meals 
and a sedentary lifestyle, which also represent risk factors for T2DM. 
This may explain a strong association between NAFLD and T2DM 
(that is, >70% of patients with T2DM have NAFLD and >20% of 
patients with NAFLD have or will develop T2DM)16,17. Therefore, 
many overlapping pathophysiological aspects exist between NAFLD 
and T2DM. NAFLD occasionally also develops in lean individuals, 
which likely indicates an independent pathophysiology (or cause). 
However, similar long-term consequences apply to these patients,  
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as recently demonstrated by patients with ‘lean NASH’ with 
increased risk for hepatic or extrahepatic disease and metabolic 
comorbidities7, stressing the link to metabolic dysfunction.

Hepatic lipid and sugar metabolism in NAFLD
Hepatic steatosis is a complex process with several contributors. 
Whereas an increased influx of lipids or free fatty acids (FFA) 
into the liver18 and increased de novo lipogenesis (DNL), typically 
observed in association with hepatic insulin resistance19, play a key 
role, the decrease in fatty acid oxidation and lipid export from the 
liver (and other mechanisms) might also contribute20,21. The global 
increase in NAFLD is parallelled by overconsumption of calories 
derived from fat and sugar22. Dietary FFA and glycerol participate 
in hepatic triglyceride synthesis via hepatocellular long-chain fatty 
acids bound to coenzyme A (CoA) (they form fatty acyl-CoA). 
Visceral adipose tissue (VAT) also contributes to hepatic steatosis. 
Increased delivery of FFA from VAT to the liver promotes hepatic 
steatosis, hepatic insulin resistance and dyslipidaemia. The extent 
to which VAT contributes to NAFLD remains unclear, although 
there is a significant association between VAT volume and hepatic 
steatosis23. Importantly, aside from VAT, subcutaneous adipose tis-
sue (SAT) also reflects a major source of FFA flooding the liver in 
obesity24. More than 25% of FFA coming to the liver are derived 
from SAT, and this percentage is increased in the case of adipose 
insulin resistance.

Fructose overconsumption plays a major role in the aetiology of 
NAFLD. Dietary sugars and especially excessive fructose consump-
tion induce lipogenesis, and fructose is largely metabolized into tri-
glycerides via DNL, thereby also reflecting a major energy source25. 
It has been demonstrated in mice that microbiota-derived Toll-like 
receptor (TLR) agonists, such as endotoxin, drive NAFLD with-
out influencing fructose-1-phosphate and cytosolic acetyl-CoA26. 
Fructose consumption in this study induced DNL, NASH and hepa-
tocellular carcinoma, parallelled by intestinal barrier dysfunction 
and epithelial endoplasmic reticulum (ER) stress. Mechanistically, 
fructose induced endotoxaemia and activated MyD88-mediated 
inflammatory processes in liver myeloid cells, thereby trigger-
ing tumour necrosis factor (TNF) synthesis. TNF furthermore  
promoted fructose-driven lipogenesis, demonstrating how an 
inflammatory signal affects lipogenesis26.

Lipotoxicity and liver injury
Free cholesterol and sphingolipids. It has long been assumed 
that lipids are hepatotoxic and propagate inflammatory responses. 
Whereas triglycerides were previously considered major culprits in 
lipotoxicity, recent evidence indicates rather that cholesterol and 
sphingolipids are equally involved in lipid-induced hepatic inflam-
mation. Hepatic free cholesterol (FC) acts in a lipotoxic fashion, 
thereby potentially contributing to disease progression27. Levels of 
liver cholesterol and the transcriptional regulators YAP–TAZ are 
substantially increased in NAFLD livers both in mice and humans 
during disease progression from simple steatosis toward inflam-
mation and fibrosis28,29. The importance of this pathway even in 
liver fibrosis has been substantiated in further studies by target-
ing acid ceramidase, which inhibits YAP–TAZ30. The interaction 
between FC and TAZ is an excellent example of how FC might 
act in a lipotoxic manner and cause ‘sterile inflammation’ without 
involving microbial cues. An earlier study by Fernandez-Checa 
and colleagues highlighted a key role for FC in NASH by showing 
that FC but not FFA or triglycerides sensitizes mice to TNF- and 
Fas-induced steatohepatitis31.

Aside from FC, sphingomyelin (SM), produced by sphingo-
myelin synthases (SMS), also provides another candidate for 
lipotoxicity. A high-fat and high-cholesterol diet increased SM 
and diacylglycerol concentrations in mouse livers, parallelled by 
increased expression of sphingomyelin synthase 1 (Sms1), and this 

was also observed in patients with NASH32. FC upregulates Sms1 
in hepatocytes, and Sms1 knockdown in these animals prevented 
NASH32. This study illustrates well how certain lipids may activate 
inflammatory pathways and suggests that SMS1 is a potential tar-
get for future therapies. Furthermore, ceramides are a central prod-
uct in sphingolipid metabolism; intestinal ceramide production 
promotes hepatic steatosis33; and ceramide serum levels correlate 
with the presence of NASH34. Hepatic sphingolipid and ceramide 
concentrations also correlate with insulin resistance in human 
NASH35,36, which may be related to a sensitizing effect of ceramide 
on insulin sensitivity37, and, consistently, targeted ceramide deg-
radation in a transgenic mouse model improved both hepatic ste-
atosis and insulin sensitivity38. In conclusion, both preclinical and 
human studies support an important role for sphingolipids and 
ceramide in NAFLD (Fig. 1).

FFA and the inflammasome. Although most lipids accumulate in 
the steatotic liver as inert triglycerides, certain lipids, such as satu-
rated fatty acids, diacylglycerols, ceramide, FC or SM, exert lipo-
toxicity. The nucleotide oligomerization domain-containing protein 
(NOD)-, LRR- and pyrin domain-containing protein (NLRP)3 
inflammasome links lipid sensing with induction of inflammation, 
and this pathway was convincingly demonstrated to play a role in 
obesity and related disorders. The NLRP3 inflammasome is a mul-
tiprotein complex that mediates processing of caspase-1 and finally 
results in the release of mature interleukin (IL)-1β. Cytoplasmic 
receptors of the NOD-like receptor (NLR) family interact with the 
adaptor protein ASC, which recruits the precursor form of caspase-1. 
The NLRP3 inflammasome was shown to sense diverse stimuli 
ranging from microbial to nonmicrobial damage-associated molec-
ular patterns (DAMPs) including adenosine triphosphate (ATP), 
uric acid, necrotic cells and various lipids39. For example, Wen and 
colleagues demonstrated that various FFA and especially palmitate 
(which shows elevated plasma concentrations after consuming a 
high-fat diet) activate NLRP3 in hematopoietic cells40. Activation of 
the NLRP3 inflammasome also links obesity with insulin resistance 
as demonstrated in Nlrp3−/− mice41. High-fat diet-induced insulin 
resistance was mitigated in these mice and parallelled by decreased 
levels of IL-1β, IL-18 and interferon (IFN)-γ expression in adipose 
tissue and the liver41.

When at sufficiently high concentrations, saturated fatty 
acids may crystallize in macrophages or cause K+ efflux, both of 
which may trigger NLRP3 activation42,43. While certain FFA acti-
vate NLRP3, ω-3 polyunsaturated fatty acids (and derivatives) or 
mono-unsaturated fatty acids conversely attenuate macrophage 
activation and might thereby limit inflammatory responses44,45. 
Oral administration of sulforaphane, a specific NLRP3 inhibitor, 
improves hepatic steatosis after a high-fat diet, and this effect was 
accompanied by inhibition of saturated fatty acid-induced activation 
of the NLRP3 inflammasome46. Finally, other inflammasome com-
ponents, such as NLRP6 or NLR family CARD domain-containing 
protein 4 (NLRC4), have also been found to play a role in murine 
models of NAFLD47. In summary, the concept of lipotoxicity is now 
well established in NAFLD (Fig. 1). Nonetheless, 70–80% of patients 
with NAFLD never develop inflammation in a steatotic liver, indi-
cating that host genetics and possibly specific dietary lipids exert 
protective or anti-inflammatory functions.

Er stress
Lipotoxic lipids cause not only inflammasome activation and oxi-
dative stress but also perturb ER functions such as lipid homoeo-
stasis48,49. Perturbation of ER functions, collectively referred to as 
ER stress, orchestrates key cellular signalling events in obesity, 
T2DM50 and liver diseases51 with an increasingly recognized role 
in human NAFLD52. Distinct inflammatory signals are derived 
from the ER, involving activation of transcription factors nuclear 
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factor (NF)-κB and c-Jun N-terminal kinase (JNK), which influ-
ence liver immune responses and cell death53. ER stress is also 
notable in NAFLD, in which evidence from mice has shown that 
hepatocytes transmit these stress signals to neighbouring hepato-
cytes by connexin 43 channels, indicating transmission of stress 
events across the liver54.

Lipids, inflammation and their effects on insulin resistance
Insulin resistance has been recognized as a key feature in NAFLD, 
although it remains unclear whether hepatic steatosis precedes insu-
lin resistance or insulin resistance drives hepatic steatosis. Hepatic 
insulin resistance, defined as an impaired ability of insulin to sup-
press hepatic glucose production55, is present in most patients with 
NAFLD, supporting the notion that NAFLD constitutes a systemic 
metabolic disorder56,57. The pathophysiology underlying hepatic 
insulin resistance remains complex, and various non-inflammatory 
and inflammatory cues might be involved16. FFA were recognized 
decades ago as causing skeletal muscle insulin resistance58, and 
various lipids are key drivers of systemic and tissue-specific insu-
lin resistance, potentially including ceramides, diacylglycerols, 
long-chain fatty acyl-CoA and acylcarnitines (aside from FFA)15. 
Indeed, a lipid infusion induces hepatic insulin resistance even in 
lean individuals59, and NAFLD is characterized by increased hepatic 
gluconeogenesis and glycogenolysis60,61. Moreover, intrahepatic lip-
ids contribute to hepatic insulin resistance and hyperinsulinaemia 
typically observed in NAFLD62,63.

Inflammation and insulin resistance. Aside from lipids, tissue 
inflammation also affects insulin resistance64. Pro-inflammatory 
hits involving cytokines (and activation of related transcription fac-
tors) have been characterized in the past 2 decades as important 
regulators of insulin resistance by disruption of insulin signalling65. 
Ablation of TNF or its receptors in mice improved insulin sensi-
tivity in obesity66; however, the use of TNF-neutralizing agents to 
treat chronic inflammatory conditions such as rheumatoid arthri-
tis for more than 2 decades appeared to have no significant effect 
on insulin resistance. IL-1β is a potent pro-inflammatory cytokine 
that alters insulin signalling, and, in contrast to anti-TNF therapy, 
the use of an IL-1 receptor antagonist (anakinra) improved insulin 
sensitivity in patients with T2DM67. As such, this study links pro-
duction of inflammatory mediators with reduced insulin sensitiv-
ity in humans. Accordingly, several transcription factors involved 
in inflammation, such as NF-κB, the inhibitor of NF-κB (IKKβ) 
or JNK1, contribute to inflammation-related insulin resistance in 
experimental animal models68–71. However, the sequence of events 
in the development of insulin resistance remains poorly under-
stood. For example, obesity-induced insulin resistance might pre-
cede macrophage accumulation in adipose tissue and subsequent 
cytokine and chemokine production72. Overall, a complex interac-
tion of non-inflammatory and inflammatory components might 
contribute to hepatic and systemic insulin resistance in NAFLD.

Overall, the above-discussed principles demonstrate that hepatic 
steatosis is a first and initial event in the pathogenesis of NAFLD.  
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Fig. 1 | Diet constituents and lipotoxicity as a fuel for NAFLD. A range of hepatic diseases can cause secondary fatty liver disease (for example, viral 
infection), while primary cases occur consequent to a Western lifestyle and an excess of nutrients. Metabolism and sensing of dietary excess (for example, 
sugar and lipids) critically drive the development of NAFLD. For example, excessive intake of fructose fuels lipogenesis and steatosis. Likewise, dietary 
lipids such as cholesterol or sphingolipids accumulate in the liver, are metabolized and trigger immune responses in hepatocytes and hepatic immune cells 
(for example, Kupffer macrophages) by activation of pattern recognition receptors and the unfolded protein response (UPr), which mediates lipotoxicity, 
hepatic inflammation and various aspects of NAFLD.
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It remains a major challenge to understand why lipid accumulation 
is inert in some NAFLD cases, whereas, by contrast, lipids become 
‘toxic’ and might drive the disease process by causing inflammation 
and liver injury in a substantial number of patients with NAFLD. 
The role of other nutrients as drivers of inflammation remains less 
clear, but, as stated, fructose could reflect another candidate with 
such potential.

Gut microbiome and NAFLD
There is growing evidence that the gut microbiome–liver axis plays 
a key role in NAFLD and especially in progression toward more 
advanced disease stages73. Mainly preclinical reports but also several 
large clinical studies from past years strongly support the notion 
that a gut microbiome signature exists in NAFLD.

Gut microbiome alterations in NAFLD: clinical evidence
Several large human studies have now investigated the gut micro-
biome in NAFLD. Patients with NASH demonstrated a microbial 
signature potentially allowing differentiation between early and 
advanced liver fibrosis, which was characterized by an increase 
in Proteobacteria and Escherichia coli abundance, whereas that 
of Firmicutes and Faecalibacterium prausnitzii was significantly 
decreased74. In a large human study from Rotterdam, 472 of 1,355 
participants showed evidence of hepatic steatosis associated with 
lower microbial diversity and the presence of Coprococcus and 
Ruminococcus gnavus75. A certain gut microbiome composition 
distinguished cirrhosis from non-cirrhosis irrespective of disease 
aetiology and in samples from geographically separated regions76. 
Importantly, the gut microbiota might be of importance in lean 
patients with NAFLD as suggested by a study from Asia77. The 
abundance of Ruminococcaceae and Veillonellaceae was mainly cor-
related with fibrosis in lean individuals accompanied by enhanced 
faecal bile acids and propionate. Administration of these bacteria to 
mice instigated features of NAFLD77. The role of Veillonella is chal-
lenged, however, as treatment of NASH with the fibroblast growth 
factor (FGF)19 analogue aldafermin resulted in a dose-dependent 
enrichment of this genus78 (Table 1).

A recent study from Germany demonstrated that long-term gut 
microbiome instability over a 5-year interval with dominance of 
Enterobacteriaceae and Escherichia and Shigella was associated with 
development of NAFLD and T2DM79. Collectively, numerous pre-
clinical models and adequately powered human studies have shown 
an altered microbiome in NAFLD80 (Fig. 2). Many preclinical stud-
ies have demonstrated that hepatic steatosis is linked to the gut 
microbiome, as, for example, the probiotic VSL#3 abolished hepatic 
steatosis in ob/ob mice81 and both obesity and dietary factors are 
considered major confounders known to affect the gut microbiome 
beyond NAFLD73. However, causality between microbiome signals 
and the course of NAFLD (in particular, disease progression) in 
humans has not been established, and most insights have been gen-
erated in experimental models.

Potential mechanisms of how the gut microbiome affects 
fatty liver disease
Metabolites derived from intestinal bacteria. The first contact 
between the gut microbiota and the immune system occurs with 
dendritic cells (DCs) when they phagocytose live commensal 
organisms in Peyer’s patches. These loaded DCs stay within mes-
enteric lymph nodes, and induction of an immune response against 
commensals is restricted to the mucosa. In case of an impaired 
intestinal barrier, as frequently observed in NAFLD82, commen-
sals and bacterial components might gain access via portal venous 
blood to the liver83. It has been well recognized in recent years 
that especially microbe-derived but also host-derived metabolites 
are sensed by immune cells. For example, imidazole propionate, a 
microbial histidine-derived metabolite, affects insulin signalling,  

and systemic serum and portal vein concentrations were 
increased in patients with T2DM84. Likewise, N,N,N-trimethyl-
5-aminovaleric acid (a metabolite of gut bacteria) serum  
levels are increased in NAFLD, and, when mice are treated with 
antibiotics (or kept free of germs), its concentration decreases85. 
This is notable because N,N,N-trimethyl-5-aminovaleric acid 
worsened experimental hepatic steatosis induced by a high-fat 
diet85. Finally, the bacterial metabolite phenylacetate triggers 
hepatic steatosis in mice, as did faecal transfer from obese women 
into mice86; however, further studies are needed to prove the rel-
evance of host-derived or microbe-derived dietary metabolites in 
human NAFLD.

Bacterial endotoxin as a driver of NAFLD. Increased circulating 
endotoxin concentrations were described in alcohol-related liver 
disease and NAFLD 3 decades ago87. Today, collective evidence 
formed the basis for Christopher Day’s second-hit hypothesis of 
NAFLD88, which we further developed to the multiple-hit model, 
suggesting that various inflammatory cues from adipose tissue and 
the gut contribute to the progression of NAFLD89. Patients with 
NASH indeed exhibit increased circulating endotoxin levels com-
pared to patients with simple steatosis, and hepatocytes in NASH 
livers stained positive for endotoxin accompanied by an increased 
number of TLR4+ hepatic macrophages90. Several bacteria such as 
Enterobacter cloacae B29, E. coli PY102 and Klebsiella pneumonia 
A7, all endotoxin producers, enforce the development of NAFLD 
in germ-free mice exposed to a high-fat diet91. As such, gut-derived 
endotoxin and related hepatic Toll-like and NOD-like receptor sig-
nalling are important drivers of experimental NAFLD and, poten-
tially, of more advanced stages of human NAFLD.

It has been increasingly recognized that, aside from endotoxin, 
other microbial components and bacterial DNA are detectable in 
‘sterile’ tissues such as the liver, suggesting that tissue microbiome 
components might reflect a new aspect in human NAFLD (Box 1).

bile acids: linking metabolism with the gut microbiota
Bile acids are metabolites of cholesterol metabolism, secreted into 
the gut via the biliary tree, and they control hepatic and extrahe-
patic metabolism and specifically energy homoeostasis92. Bile acids 
improve glucose metabolism and obesity by, for example, farnesoid 
X receptor (FXR) signalling. Importantly, secreted bile acids are 
processed (that is, conjugated) by the gut microbiota into second-
ary bile acids and affect the growth of bile acid-metabolizing bac-
teria. In NAFLD, the role of bile acids is increasingly appreciated93. 
For example, patients with NAFLD exhibit increased fasting and 
postprandial serum bile acid concentrations, which correlate with 
more severe liver disease94 and are associated with insulin resis-
tance but not hepatic inflammation95. Clinical evidence for a critical 
role of bile acids in NAFLD stems from trials demonstrating that 
obeticholic acid or 24-norursodeoxycholic acid ameliorates aspects 
of NAFLD96,97(Table 1). For example, administration of obeticholic 
acid resulted in a significant improvement in hepatic inflammation 
and fibrosis and metabolic disturbances96. The role of nuclear recep-
tors (for example, FXR) and FGFs in NAFLD is also emerging and 
has been reviewed elsewhere98,99.

To summarize, there is increasing evidence that gut dysbiosis 
plays a role in NAFLD, and this is not only supported by preclinical 
trials but increasingly by well-designed clinical studies. It remains 
to be elucidated in the future which bacterial strains (or lack of 
strains) might drive key features of this disease such as hepatic 
steatosis, inflammation, liver injury or the evolution of insulin 
resistance. Furthermore, microbial components might also act on 
other important features of this disease such as liver fibrosis. Host 
variables such as alcohol consumption, stool frequency and consis-
tency or genetic factors have a major effect on gut microbiome com-
position and therefore require attention for careful interpretation  

NATurE METAbOLIsM | VOL 3 | DEcEMbEr 2021 | 1596–1607 | www.nature.com/natmetab 1599

http://www.nature.com/natmetab


Review ARticle NATUre MeTABoLISM

of microbiome-sequencing results100,101, while neglect of such con-
founders leaves room for biased interpretation.

Immunity and NAFLD
Low-grade systemic inflammation in NAFLD might be especially 
relevant in patients with progressive disease such as NASH and 
advanced liver disease102. Whereas certain extrahepatic sites such 
as adipose tissue have evolved as a major source of inflammatory 
mediators in obesity-related disorders, evidence is accumulating 
that the gastrointestinal tract might also be critically involved in the 
pathogenesis of low-grade inflammation89.

Innate immunity driving metaflammation
NAFLD: a disorder characterized by metaflammation and caused 
by multiple parallel hits. Innate immunity is of crucial relevance 
in NAFLD. Many immunometabolic disorders such as NAFLD 
are characterized by intermittent chronic low-grade inflammation 
(termed ‘metaflammation’)13,102. Liver inflammation (that is, NASH) 
and systemic inflammation appear in 10–30% of all patients with 
NAFLD and are commonly followed by liver damage and conse-
quently liver fibrosis. Inflammation and especially fibrosis have 
emerged as key prognostic parameters of this disease, being drivers 

of hepatic complications, such as liver cirrhosis or hepatocellular 
carcinoma, or extrahepatic complications, such as cardiovascular 
complications and extrahepatic malignancies3,103,104. Whereas certain 
biomarkers such as circulating cytokines, for example, IL-1 receptor 
antagonist, might reflect the inflammatory nature of NASH, liver 
biopsy still defines the gold standard to detect liver inflammation.

A matter of major discussion is where chronic inflammation 
develops and how it is initiated. We proposed more than a decade 
ago that liver inflammation might be initiated by various signals 
derived from the gastrointestinal tract (derived from microbes and/
or diet) and signals from adipose tissue (lipids, cytokines)89. Indeed, 
evidence is accumulating that the degree of physical activity, gut 
microbiome stability, dietary factors and certain lipid concentra-
tions or combinations, as outlined in this review, might be responsi-
ble factors that orchestrate chronic inflammation in NAFLD13,105. In 
particular, adipose tissue has emerged in obesity and obesity-related 
disorders as a major source of circulating pro-inflammatory cyto-
kines (for example, 30% of circulating IL-6), thereby affecting 
the extent of liver inflammation106. A key role for inflammation 
of SAT (as a major sink for pro-inflammatory cytokines) stems  
from our laboratory, where we demonstrated substantial IL-1β and 
IL-6 expression in SAT of morbidly obese patients107,108. Microbial 

Table 1 | Emerging therapies targeting metabolism, gut microbiome and immunity in NAFLD

Compound Drugs in class Mechanism of action

Metabolism and lipotoxicity

 Acc inhibitors152 cilofexor Inhibitor of DNL

 FGF19 analogues153 Aldafermin reduces lipotoxicity; decreases food intake, 
gluconeogenesis and bile acid synthesis, increases FGF21 
expression

 FGF21 analogues154 Pegbelfermin reduces lipotoxicity, increases adipose tissue browning and 
energy expenditure and/or thermogenesis

 FXr agonists96 Obeticholic acid, cilofexor, tropifexor Increases energy expenditure and metabolic rate, decreases 
adiposity and DNL

 GLP-1 agonists155 Liraglutide, semaglutide Decreases food intake, stimulates secretion of insulin, 
inhibits secretion of glucagon

 Norursodeoxycholic acid97 Interaction with bile metabolism

 PPAr-α–PPAr-δ agonists156 Elafibranor Increases fatty acid oxidation

 Pan-PPAr agonist157 Lanifibranor Improves lipid, inflammatory and fibrosis biomarkers

 PPAr-γ agonists158 Pioglitazone Decreases visceral and hepatic fat accumulation

 SGLT1–SGLT2 inhibitors Licogliflozin Decreases renal glucose reabsorption and increases renal 
glucose excretion

 Stearoyl-coA desaturase-1 (ScD-1 
modulator)

Aramchol Decreases hepatic lipogenesis

 THr-β agonists159 resmetirom reduces low-density lipoprotein cholesterol and triglyceride 
levels

Gut microbiome

 Probiotics160 Pilot studies with various strains including 
lactobacilli, bifidobacteria, VSL#3

Decreases hepatic steatosis

 Faecal microbiota transplantation161 FMT Improves insulin sensitivity

Inflammation and/or immunity

 c–c motif chemokine receptor 2 and 
ccr5 antagonist162

cenicriviroc Anti-inflammatory, anti-fibrotic

 Galectin-3 receptor agonists belapectin Mainly anti-fibrotic

 Vitamin E158 reduces oxidative stress, anti-inflammatory

 Potential further targets TLrs, NLrP3, LPS, cD3, NKT cells, metabolic T cell activation

Acc, acetyl-coA carboxylase; ccr, c–c motif chemokine receptor; FMT, fecal microbiota transplantation; GLP-1, glucagon-like peptide 1; PPAr, peroxisome proliferator-activated receptor; ScD-1, 
stearoyl-coA desaturase-1; SGLT, sodium–glucose transporter; THr-β, thyroid hormone receptor β. Many drugs listed drugs here are pleiotropic, that is, they affect various pathways including metabolic 
and inflammatory pathways. Despite the importance of inflammation, fibrosis and immunity in NAFLD, most therapeutic approaches currently focus on metabolic dysfunction.
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components, lipids and diet-derived signals all contribute substan-
tially to a so-called gut–liver axis, which also seems of crucial rel-
evance to the pathophysiology of this disease.

Cytokines and TLRs and their role in NAFLD. Cytokines and 
related mediators mainly derived from immune cells play a major 
role in any inflammatory condition109, and pro-inflammatory cyto-
kines have been demonstrated to be highly expressed, especially in 
NASH. TNF is one of the first investigated cytokines, the expression 
of which is correlated with the degree of inflammation in the NASH 
liver, while its neutralisation in animals was followed by abolish-
ment of hepatic steatosis81,110. Also, IL-1 family members have been 
shown to affect insulin–glucose metabolism and regulate metabolic 
dysfunction in NAFLD. Indeed, Il1a−/− mice exhibit lower insulin 
levels and improved insulin sensitivity, and levels of both IL-1α and 
IL-1β increase after a high-fat diet in mice111. Both Il1a−/− and Il1b−/− 
mice were protected from liver inflammation after diet-induced 
steatosis with a decrease in fibrosis-related gene expression. IL-6, 
another potent pro-inflammatory cytokine, is also expressed at 
increased concentrations both in liver and adipose tissue in patients 
with NAFLD, but its exact role in metabolic dysfunction remains 
unclear112. Blockade of the pro-inflammatory cytokine IL-11, how-
ever, attenuates hepatic steatosis and liver inflammation and fibrosis 
development in animal models of NAFLD113. It currently remains 
unclear to what extent these pro-inflammatory cytokines contribute 
to progression of liver disease in humans, as respective anti-cytokine 
clinical trials have not been performed thus far.

Hackstein et al. found that, during severe liver damage, micro-
bial translocation from the gut to the liver via the portal vein causes 
tonic IFN signalling in liver myeloid cells114. In such IFN-stimulated 
macrophages, infections with intracellular bacterial pathogens 
such as Listeria or Salmonella trigger an overshooting second IFN 
response that in turn leads to production of the inhibitory media-
tor IL-10, revealing a potent negative feedback loop in liver damage 
in response to bacterial infection. Overshooting IL-10 responses 
incapacitate anti-microbial defence by myeloid cells114. Such IFN–
IL-10-mediated paralysis of immune responses may explain the 
development of often fatal bacterial infections in patients with 
advanced liver disease including NAFLD115. Together, these obser-
vations illustrate that inflammation-promoting mechanisms in 
NAFLD are presumably the result of defined molecular processes 
rather than of nonspecific activation by cytokines.

Inflammasomes and TLRs have been carefully investigated in 
NAFLD in many studies. The NLRP3 inflammasome as a criti-
cal sensor of various lipid signals has been discussed above. Mice 
deficient in NLRP3 were protected against obesity-related insulin 
resistance, accompanied by decreased expression of monocyte che-
moattractant protein 1 and macrophage infiltration in adipose tis-
sue116. Certain TLRs are activated especially by saturated FFA117, and 
other TLRs have been found to interact with lipid signals118. These 
TLRs are prototypic sensors for bacterial signals such as endotoxin 
derived from the gastrointestinal tract in NAFLD119. Mice deficient 
in TLR5 exhibit dysbiosis, low-grade inflammation, impaired insu-
lin signalling and various features of metabolic syndrome120. Mice 
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deficient in CD14, a co-receptor for TLR4 that binds endotoxin, 
and the pattern recognition receptor NOD1 did not develop glu-
cose intolerance or gain fat mass after a high-fat diet121. Therefore, 
NLRP3 and various TLRs affect critical pathways involved in 
NAFLD including inflammatory infiltration in the liver and adipose 
tissue and regulation of insulin sensitivity. In fact, modulation of 
the gut microbiome through the activity of certain TLRs or inflam-
matory mediators may lead to change in microbiome-associated 
inflammation, which in turn may aggravate liver inflammation 
and NAFLD. Thus, the combination of innate immunity, changes 
in microbiome composition, increased gut microbial translocation 
and cell-intrinsic immune sensing pathways may all contribute to 
establish chronic inflammation in the liver.

Adaptive immunity in liver damage during NAFLD
Adaptive immunity is instrumental to control pathogen infection or 
transformed cells in cancer, which is mainly achieved through exe-
cution of effector functions from specific CD8+ T cells killing their 
target cells. Understanding the regulation of adaptive immunity in 
the context of NAFLD has received increasing attention. Here, we 
review our current understanding of how adaptive immunity and 
NAFLD are linked to each other.

Antigen-dependent activation of adaptive immunity. Sterile 
inflammation during NAFLD is considered to be triggered 
by the innate immune system as compared to chronic infec-
tious liver inflammation, in which adaptive immunity targeting 
virus-infected hepatocytes during chronic hepatitis B, C or D 
destroys liver tissue122. Consistent with a role of adaptive immu-
nity in NAFLD, increased numbers of antigen-presenting cells 
such as DCs or monocytes were found to be associated with  
the severity of NASH123,124, and several studies characterized  

transcriptional profiles at the single-cell level125,126. Notwithstanding 
this increase in understanding of liver and immune cell hetero-
geneity in NASH, immunogenic auto-antigens that could be 
targets for specific T cell-based destruction of liver tissue have 
not been defined in NAFLD127. Nevertheless, antibodies specific 
for oxidative stress-derived epitopes are found in 40% of adult 
patients with NAFLD or NASH and target the cyclic malondi-
aldehyde acetaldehyde adduct methyl-1,4-dihydroxypyridine-3
,5-dicarbaldehyde128, but no experimental evidence from preclini-
cal models or human in vitro studies for antibody-driven liver 
damage in NAFLD exists. Instead, liver pathology in NAFLD is 
exacerbated in mice lacking conventional type 1 DCs or CD11c+ 
DCs, instead supporting an anti-inflammatory role of DCs in the 
pathogenesis of NAFLD124,129.

Similarly, it is unknown whether auto-reactive B cells contrib-
ute to the initiation of liver pathology in NAFLD. However, lev-
els of B-cell activating factor, a TNF superfamily member that is 
secreted by adipocytes and regulates the development of B cells130, 
are increased in patients with liver steatosis compared to those in 
control individuals131. Deletion of B-cell activating factor in preclini-
cal NAFLD models ameliorates hepatic fat accumulation and inhib-
its inflammation in VAT, but a direct liver-damaging function of  
B cells in NAFLD has not been identified132.

Given the disturbance of lipid metabolism in livers of patients 
with NASH, natural killer T (NKT) cells were considered to play a 
role in NAFLD. These innate-like T cells recognize lipid antigens 
presented by the major histocompatibility complex-like molecule 
CD1d and are categorized in type I and II NKT cells based on their 
different expression of T cell receptor (TCR)-αβ chains133. Activated 
NKT cells secrete LIGHT, a member of the TNF super family, 
which promotes lipid uptake by hepatocytes and is upregulated 
in patients with NASH134. Furthermore, hepatic CD1d expression 
and increased numbers of CD3+CD56+ cells in patients with NASH 
were found, suggesting a potentially important role of NKT cells 
in this disease135,136. Again, however, formal experimental evidence 
for antigen-specific activation of NKT cells as a mechanism of liver 
damage in NAFLD has not been obtained.

Metabolic activation of T cells in NAFLD. Despite accumulat-
ing data that the adaptive immune system plays a role in NASH, 
it has remained unclear how T cells could cause liver damage in 
NAFLD. Short-chain fatty acids, which include acetate, butyrate 
and propionate, are bacterial metabolites produced from the diges-
tion of dietary fibre and are known to have immunomodulatory 
effects on different T cell subsets, for example, inducing regula-
tory T cells or IL-22 production in innate lymphoid cells and CD4+ 
T cells in the gut137–139. Bile acids are dysregulated in patients with 
NAFLD140, and increased concentrations of two bile acid derivatives 
of lithocholic acid, 3-oxolithocholic acid and isoallolithocholic acid, 
favour differentiation of regulatory T cells over the TH17 subset of 
helper T cells141 and might thereby provoke tissue damage. Whether 
mechanisms similar to those in the gut take place in the liver during 
NAFLD needs to be addressed in the future.

The lack of development of NASH in experimental models after 
depletion of CD8+ T cells or in B2m−/− mice fed a choline-deficient 
high-fat diet demonstrated a critical role of T cells in causing liver 
damage134,142, but the mechanisms causing T cell activation and how 
this mediated liver cell damage were not resolved. Recently, it was 
shown that liver-resident CXCR6+CD8+ T cells caused liver dam-
age after metabolic activation through the purinergic type 2 recep-
tor P2RX7 in the absence of conventional antigen presentation by 
hepatocytes143. This highlights a new concept of T cell activation 
that occurs in the absence of canonical T cell receptor activation by 
peptide-loaded major histocompatibility complex molecules. This 
metabolic activation of T cells that leads to antigen-independent 
destruction of target cells such as hepatocytes has been termed 

Box 1 | Tissue microbiome: a new relevant feature in NAFLD 
pathogenesis?

It is increasingly appreciated that microbial components and 
bacterial DNA are detectable in various tissues that are consid-
ered sterile163. The liver is exposed to gut bacteria especially in 
diseases associated with an impaired intestinal barrier. For ex-
ample, bacterial DNA was detectable in the liver of patients with 
NAFLD, especially if they were obese164. Proteobacterial abun-
dance was increased in the liver of patients with severe obesity, 
while Gammaproteobacteria and Alphaproteobacteria as well 
as Deinococcus–Thermus dominated in moderately obese pa-
tients164. Likewise, plasma, adipose and liver tissue microbiomes 
were detectable in patients with T2DM165, especially in VAT, 
which was characterised instead by inflammation-enhancing 
Enterobacteriaceae165,166.

Currently, it is unknown whether bacterial DNA detected in 
metabolic tissues is inert, reflects live bacteria and/or regulates 
biological processes (for example, lipogenesis or inflammation). 
However, tissue microbiome abundance in VAT has been 
associated with immune cell infiltration and inflammatory 
parameters, suggesting that detectable signals may affect 
immune responses167. Alternatively, impaired degradation of 
phagocytosed bacteria by liver macrophages, as observed in 
liver damage, may contribute to abundance of microbiota in 
the liver114. In the liver, such microbiome signals appear to 
localize to specific zones in the micro-architecture that are 
defined by liver-resident sinusoidal endothelial cells168. Whether 
these findings are relevant to human NAFLD remains to be 
determined, and they could shed light on intricate host–microbe 
commensalism in the liver.
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auto-aggression. Auto-aggression develops as a sequential pro-
cess in which initial IL-15 activation is critical for the generation 
of high numbers of liver-resident CXCR6+CD8+ T cells, followed  
by increased effector function triggered by metabolites that are 

abundant in the liver during NAFLD, in particular, the short-chain 
fatty acid acetate and ATP143.

The separate effects of IL-15 and metabolites such as ATP on 
T cells have already been investigated. IL-15 is induced during 
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Fig. 3 | Innate and adaptive immunity pathways driving inflammation in NAFLD. Progression of inflammation in NAFLD is triggered by the secretion of 
pro-inflammatory cytokines such as TNF, IL-6 and IL-1β from myeloid cells that are locally activated in the liver as a result of innate immune activation. In 
addition, local production of IL-15 or transforming growth factor (TGF)-β supports increased generation of liver-resident cXcr6+cD8+ T cells that express 
the purinergic receptor P2X7. Pathogen-associated molecular patterns (PAMPs) and metabolites such as acetate, which are derived from gut microbiota 
and reach the liver via the portal vein from the gut into the liver, can modulate the function of liver-resident T cells. Acetate-sensitized liver-resident 
cXcr6+cD8+ T cells are in close contact with stressed hepatocytes and are activated by DAMPs such as ATP or nicotinamide adenine dinucleotide 
(NAD), which are released in a pannexin 1 (PANX1)-dependent fashion by hepatocytes. Once activated through P2X7, cXcr6+cD8+ T cells execute a 
FasL-dominated killing programme, eliminating hepatocytes in NAFLD. It is likely that cXcr6+P2X7+cD8+ T cells perpetuate liver inflammation during 
NAFLD by attracting myeloid cells that further produce IL-15 to provoke generation of more auto-aggressive T cells (ccL2, c–c chemokine ligand 2; 
cXcr6, c–X–c chemokine receptor 6; eATP, extracellular ATP).
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which spirals out of control during the evolution of NAFLD, with hepatic inflammation being a critical disease driver.
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inflammation and may therefore be considered a consequence of 
innate immunity. IL-15 belongs to the IL-2 cytokine family, bind-
ing to common gamma chain receptors. IL-15 signalling in T cells 
is mediated through trans-presentation of IL-15 together with 
its receptor CD122 by epithelial cells, DCs or macrophages144. 
Although IL-15, similar to IL-12 or IL-18, is known to be important 
for the survival and activation of NKT cells, the role of these cells 
in NAFLD remains controversial145. IL-15 is a powerful signal for 
human CD8+ T cells to upregulate effector function and has been 
shown to be involved in NAFLD144,146.

Extracellular ATP, a known DAMP signal, is released from 
stressed or dying cells, causing activation of antigen-presenting 
cells that in turn boost local T cell effector functions147. Sensing 
ATP in the tissue is important for survival and for effector func-
tion of T cells by upregulating expression of Fas ligand (FasL) on 
the surface143,148, but the exact role of ATP-sensing receptors such 
as P2RX7 in liver-resident CD8+ T cells, especially during NAFLD 
progression, remains unknown. The report by Dudek et al.143 has 
now demonstrated that IL-15 prepares the stage for subsequent 
metabolic triggers to induce execution of T cell auto-aggression 
not only in the liver but also at other sites with a predisposing 
metabolic environment such as adipose tissue. Thus, combinato-
rial signalling resulting from the simultaneous presence of innate 
immunity and changes in metabolism creates a stage of T cell dif-
ferentiation that shows distinct functional properties compared to 
those of conventional T cells.

The accumulation of CXCR6+CD8+ T cells observed in the livers 
of patients with NAFLD143,149 suggests that the discovery of T cell 
auto-aggression as a liver damage-inducing mechanism will lead 
the way to develop targeted immune therapies in the future that 
aim to prevent metabolic T cell activation and auto-aggression. 
Moreover, T cell auto-aggression not only accounts for liver dam-
age but is also responsible for driving development of liver can-
cer, as shown in a recent study by Pfister et al.150. Thus, employing  

standard checkpoint inhibition therapy to trigger anti-cancer 
immunity that relieves inhibition of T cells that already induce liver 
damage carries the danger of increasing the pathogenic potential 
of auto-aggressive T cells. Indeed, Pfister et al. demonstrated that 
checkpoint inhibition of patients with NASH and liver cancer failed 
to show a therapeutic effect and accelerated tumour growth in pre-
clinical NASH models150. Separating T cell auto-aggression from 
anti-cancer immunity of T cells to design immune therapies will 
therefore be an important issue to address in the future. In sum, 
while there is little evidence for recognition of auto-antigens or 
T cell auto-immunity, it has now become evident that metabolic 
activation of liver-resident T cells is a key factor of tissue pathology 
in NASH (Fig. 3).

The studies discussed here support the concept that not only 
innate immunity but also adaptive immunity is increasingly rec-
ognized to have major relevance in metabolic disorders such as 
NAFLD. What remains to be defined is whether antigens (for exam-
ple, those derived from microbes) are especially relevant in driv-
ing innate immunity, and there is a need to elucidate how adaptive 
immunity contributes to other key features of this disease such as 
liver fibrogenesis.

Conclusions
Collective evidence highlights multiple interactions between 
metabolic pathways, the gut microbiome and immunity in 
experimental and human NAFLD. None of these factors can 
be portrayed in isolation. For example, metabolism is critically 
intertwined with the gut microbiome and the immune system in 
many layers, such that a single (initial) culprit for this disease may 
not be identified in the future. From a clinical perspective, many 
cases of NAFLD can be considered a sequelae of obesity and/or 
T2DM, and therefore metabolic dysregulation appears rather to 
be an early event in the pathophysiology of NAFLD. Hepatic insu-
lin resistance reflects another ‘sine qua non’ condition in NAFLD. 
Genetic studies thus far mainly linked lipid metabolism but rarely 
immunity or host–microbe interactions with human NAFLD151. 
Likewise, lipotoxicity emerges as a detrimental driver of liver 
inflammation and fibrosis in NAFLD, which also underlies  
metabolic perturbation.

Collectively, metabolic dysregulation, dietary factors, obesity and 
T2DM have the capability to alter the gut microbiota, which serves 
as a pool of metabolites and inflammatory signals in patients with 
or without a leaky gut. Such gut microbiota-derived signals direct 
innate and adaptive immune responses by exploiting pattern rec-
ognition receptors and metabolic reprogramming, challenging the 
sterile nature of liver diseases. This complexity can be depicted in a 
‘triangle of NAFLD’ (Fig. 4), underpinning the idea that advanced 
disease stages may be driven by immune dysregulation, gut dys-
biosis and metabolic perturbation, which collectively fuel hepatic 
inflammation and other aspects of NAFLD.

The identification of auto-aggressive T cells, activation of which 
is distinct from that of T cells protecting us against infection and 
cancer, as drivers of liver damage and liver cancer in NAFLD will 
help to identify molecular targets for intervention at the level of 
immune-mediated liver damage. A major challenge in the field 
is to translate these mechanistic insights into new therapeutic 
approaches, which are currently under extensive clinical investiga-
tion in controlled trials (Table 1), disentangling the often correlative 
nature of many human NAFLD studies. This may also be facilitated 
by studies that will delineate remaining aspects in the conundrum 
of NAFLD, which are discussed in Box 2. Today, this ever growing 
field already challenges the clinical perception of NAFLD, which 
gives hope to overcome the NAFLD pandemic.
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Box 2 | Outstanding questions arising from the interaction of 
metabolism, the gut microbiome and immunity in NAFLD

What are the crucial dietary components driving NAFLD? How 
do they alter the gut microbiome and/or innate and adaptive im-
mune functions (to provide a better rationale for dietary inter-
vention in NAFLD)? What are the effects of pro-inflammatory 
diets in this disease? Could dietary components also promote 
liver fibrosis directly?

Can we identify crucial metabolites, either derived from 
microbes or not, affecting key features of NAFLD such as insulin 
resistance?

Which commensals are metabolically detrimental or 
beneficial? Are we able to design in the future a smart beneficial 
probiotic for this disease?

Bariatric surgery has proven highly effective in improving 
NASH and fibrosis. Is weight loss alone sufficient to improve 
other sequelae of this disease such as liver inflammation and 
fibrosis? If yes, this would suggest that activation of innate 
and adaptive immunity are rather consequences of metabolic 
dysfunction.

Are any therapeutic concepts effective in NAFLD (without 
causing relevant weight loss), that is, can anti-inflammatory 
therapies, for example, improve this disease substantially and 
sustainably by targeting cytokines and/or chemokines?

Will reduction of hepatic fat by certain drugs also improve 
inflammation and/or fibrosis?

Are changes in metabolism, the gut microbiome and 
immunity causal or merely correlative in human NAFLD?
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