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Abstract

Neurofilament proteins have been validated as specific body 
fluid biomarkers of neuro-axonal injury. The advent of highly 
sensitive analytical platforms that enable reliable quantification 
of neurofilaments in blood samples and simplify longitudinal 
follow-up has paved the way for the development of neurofilaments 
as a biomarker in clinical practice. Potential applications include 
assessment of disease activity, monitoring of treatment responses, 
and determining prognosis in many acute and chronic neurological 
disorders as well as their use as an outcome measure in trials of novel 
therapies. Progress has now moved the measurement of neurofilaments 
to the doorstep of routine clinical practice for the evaluation of 
individuals. In this Review, we first outline current knowledge on the 
structure and function of neurofilaments. We then discuss analytical 
and statistical approaches and challenges in determining neurofilament 
levels in different clinical contexts and assess the implications of 
neurofilament light chain (NfL) levels in normal ageing and the 
confounding factors that need to be considered when interpreting NfL 
measures. In addition, we summarize the current value and potential 
clinical applications of neurofilaments as a biomarker of neuro-axonal 
damage in a range of neurological disorders, including multiple 
sclerosis, Alzheimer disease, frontotemporal dementia, amyotrophic 
lateral sclerosis, stroke and cerebrovascular disease, traumatic brain 
injury, and Parkinson disease. We also consider the steps needed to 
complete the translation of neurofilaments from the laboratory to the 
management of neurological diseases in clinical practice.
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and their importance as an outcome parameter has been recognized 
by regulatory authorities11–13. Indeed, the accelerated approval of tofer-
sen (for treatment of SOD1-associated amyotrophic lateral sclerosis 
(ALS)) by the FDA based on NfL levels as a primary end point measure 
marks a breakthrough in the field of translational biomarker research10. 
However, this accelerated approval was in the context of an orphan or 
rare disease; all currently available assays for NfL are designated as 
for ‘research use only’ and further clinical and regulatory validation is 
needed to achieve the designation of ‘in vitro diagnostic’ that can be 
used in common diseases.

NfL levels in the serum or plasma provide quantitative, real-time 
information about the extent of ongoing neuro-axonal injury that can 
be combined with clinical and imaging metrics to assess disease activ-
ity. However, several hurdles need to be surmounted before NfL can be 
widely used in clinical practice. Several confounding factors, such as 
age, chronic kidney disease and BMI, affect the measurement of NfL 
concentrations14,15, making it difficult to establish fixed cut-off levels 
based on absolute NfL concentrations16. Other issues that need to be 
addressed include NfL degradation and clearance, biological under-
standing of the analytical target17, post-translational modifications and 
harmonization of different analytical platforms2,18,19.

In this Review, we provide an update on the current knowledge  
of neurofilaments, analysis of NfL levels, the potential clinical value of  
neurofilaments for the main neurological disorders and the progress 
towards their translation into clinical practice. Further, we highlight 
the steps needed to complete the development and validation of NfL 
for its use as an in vitro diagnostic test.

Neurofilaments — structure and function
The cytoskeleton of neurons and axons contains five neurofilament 
protein isoforms1; NfL, neurofilament medium chain (NfM), neurofila-
ment heavy chain (NfH), α-internexin and peripherin. Additional splice 
variants exist, but their distributions and significance are not yet clear 
because they have not been systematically examined2. Neurofilament 
proteins are obligate heteropolymers and contain intrinsically unstruc-
tured regions in which most mutations that cause or predispose to 
disease occur2,20. Presently, a total of 121 mutations in neurofilament 
isoforms have been associated with ALS, Charcot–Marie–Tooth disease 
or spinal muscular atrophy (SMA)2 (Table 1).

The structures of neurofilament proteins are modified by post-
translational modifications21,22. The most extensive post-translational 
modification is phosphorylation, which results in charge repul-
sion2,23 (Table 1). Abnormal phosphorylation sites that result from 
mutations can promote formation of neurofilament protein hetero-
aggregates, which are pathological features of Alzheimer disease 
and ALS24. Neurofilament protein aggregates associate through amy-
loidogenic elements25–27, rendering them extraordinarily resistant 
to decay28. Other common post-translational modifications in 
neurofilament proteins are citrullination, glycosylation and glyca-
tion, all of which have roles in neurodegeneration and autoimmune  
pathology2,29–31.

The relative quantities — the stoichiometry — of the different neuro- 
filament protein isoforms is 7:3:2 in health and changes in disease, 
when NfL increases and NfM and NfH decrease. The shift in neurofila-
ment protein stoichiometry also saves neurons energy in the face of 
progressive neurodegeneration32, and this relationship explains why 
NfL is the most promising biomarker at the individual patient level — its 
greater abundance maximizes measurement sensitivity2,22. Therefore, 
the release of a stable, pathology-specific NfL cleavage product17 makes 

Key points

 • Neurofilament proteins have emerged as one of the most important 
body fluid biomarkers of neuro-axonal injury in a wide range of 
neurological diseases.

 • High-sensitivity analytical platforms enable reliable quantification 
of neurofilament light chain (NfL) levels in blood samples, paving the 
way for their use in clinical practice.

 • Establishment of large reference databases of physiological blood 
levels of NfL adjusted for age and BMI was a major milestone towards 
the clinical use of NfL.

 • Neurofilament levels can often not be used to diagnose disease 
entities but are useful as a diagnostic type biomarker in the preclinical 
phases of neurodegenerative diseases and as markers of disease 
progression, prognosis, and treatment response.

 • Neurofilament levels are increasingly used as an outcome measure 
in clinical trials; FDA approval of tofersen was based on changes in 
blood NfL levels, marking a paradigm shift in the importance of 
biomarkers in regulatory approvals.

 • Standardization and cross-compatibility of neurofilament measures 
taken with current emerging analytic platforms are key to completing 
the translation of neurofilaments into clinical practice.

Introduction
Neurofilament proteins have emerged as valid biomarkers of neuronal 
injury and loss, which is one of the major pathophysiological substrates 
of permanent disability in various acute and chronic neurological 
disorders1. Upon neuro-axonal damage and degeneration, neurofila-
ment proteins are released into the cerebrospinal fluid (CSF) and, at 
lower concentrations, into the blood. Neurofilaments can be consid-
ered one of the most important fluid biomarkers of neurodegeneration, 
and efforts are focusing on translating their use into routine clinical 
practice2.

A crucial milestone in the development of neurofilaments as bio-
markers for clinical application was the introduction of highly sensi-
tive platforms that enable reliable, high-throughput quantification of 
neurofilaments in various bodily fluids, particularly blood1,2. In some 
laboratories, measurement of neurofilament light chain (NfL) in the 
CSF3 and, more recently, in plasma4,5 has been used for several years 
as a biomarker to identify, exclude and grade neuro-axonal damage 
in clinical practice under the designation of a laboratory-developed 
test6. However, clinical validation in large cohorts has emerged only 
recently2, and full regulatory approval for the use of NfL as a clinical 
biomarker is pending.

In a previous Review published in 2018, we summarized what was 
known at the time about neurofilament structure and function, analyti-
cal factors to be considered, and age-related changes in neurofilament 
protein levels, and provided a comprehensive overview of NfL as a 
biomarker in various neurological disorders1. Subsequently, the field 
has evolved rapidly through collaboration between basic scientists, 
clinical scientists and industry partners2. Now, changes in NfL levels 
are increasingly being used as secondary end points in clinical trials7–10 
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this NfL peptide a good candidate for clinical use as a biomarker in 
individuals.

Beyond their main function of mechanical stabilization of the 
axonal cytoskeleton, neurofilament proteins have multiple functions, 
including modification of the axonal diameter33–36, axonal flow37,38, 
axonal transport39–41, anchoring and distribution of mitochondria42–44, 
and interactions with myelin proteins that govern the expression of 
neurofilament isoforms during development and myelination2,45.

Origins of neurofilaments in body fluids
In vitro studies have demonstrated a linear relationship between the 
number of degenerating neurons and neurofilament levels1,46. Brain 
microdialysis has shown that, in human traumatic brain injury (TBI), 
neurofilament protein cleavage products are released into the interstitial 
fluid adjacent to degenerating neurons46. This proteolytic breakdown of 
neurofilaments yields highly soluble and stable cleavage products2,17,47. 
The number of known cleavage products has increased rapidly since the 
first description of NfL2,17,46,48–50, and their relevance to the clinical use of 
neurofilament biomarkers is becoming clear. For example, the Uman 
antibodies (monoclonal antibodies against purified mammalian spinal 
cord that became key reagents in a commercial assay17) interact with 
epitopes that are only accessible on NfL cleavage products released 
upon neurodegeneration-induced protease activity17 (Fig. 1).

Neurofilament protein cleavage products are assumed to diffuse 
from the interstitial fluid into adjacent body fluid compartments and 
have been detected in CSF, blood, amniotic fluid, and anterior chamber 
and vitreous body in the eye1,2,51. In addition, the glymphatic system 
probably contributes to drainage of NfL from the brain into systemic 
circulation as demonstrated for other biomarkers such as glial fibrillary 
acidic protein (GFAP)52. In support of this idea, impairment of glym-
phatic flow in diseases, such as idiopathic intracranial hypertension, 
is associated with an increased CNS-to-serum ratio of NfL53. The half-life 
of neurofilament protein cleavage products has not been determined 
experimentally but applied mathematical approaches have been used 
to estimate that the half-life of measurable NfL peptides in the blood in 
TBI is ~500 h (refs. 54,55). However, serum concentration of NfL results 

from complex wash-in (leakage from the injured brain) and wash-out 
(clearance and elimination from the blood) processes with temporal 
dynamics that create a profile with an unusually long peak time and a 
decay rate that indicates ongoing pathology56. This decay of NfL after 
the peak is referred to as the effective half-life and can vary substan-
tially under different conditions and over time, making it difficult to 
determine a general half-life for NfL cleavage products56.

Most neurofilament proteins detected can be attributed to 
neurons but traces of NfL mRNA can be detected in glial cells57 and 
minimal quantities of neurofilament proteins are detectable in eryth-
rocytes, T cells, podocytes, oocytes, stem cells, testicular tissue, 
thymus tissue and cancerous tissue2. In addition, NfH, NfM and NfL 
are all expressed in the PNS as well as in the CNS2. Consequently, the 
most likely source of neurofilament proteins in body fluids can only be 
deduced in well-described clinical scenarios2. This uncertainty could 
be reduced in the future with the development of quantitative tests for 
intermediate filaments that are more specific for the CNS (α-internexin) 
and the PNS (peripherin)58,59.

To determine the origin of neurofilament proteins and the asso-
ciated pathology, a coherent and transparent approach to reporting 
quantification of these proteins and their cleavage products is essen-
tial. This approach will need to include reporting of the antibodies used. 
For this purpose, a simple nomenclature for labelling neurofilament 
proteins has been proposed in which the antibody clone used is added 
as a superscript24; for example, NfHSMI35 (ref. 60) and NfLUmea 47:3 (ref. 61). 
This nomenclature can be further developed by adding a subscript to 
indicate the location of cleavage products on the consensus human 
sequence2 (Table 1); for example, NfL530–540 (ref. 50) or NfH852–986 (ref. 46).

Technical challenges in clinical application
Analytical challenges
Advances have been made in the past 10 years in the techniques used 
to measure NfL in CSF and plasma or serum. The first major advance 
was single-molecule array (Simoa) ultrasensitive technology62,63, which 
enabled a shift from measurements in CSF to measurements in serum 
and plasma, where concentrations are much lower and not detectable 

Table 1 | Characteristics of neurofilament isoforms

Characteristic NfH NfM NfL α-Internexin Peripherin

Intermediate filament type IV IV IV IV III

Anatomical distribution CNS, PNS CNS, PNS CNS, PNS CNS PNS

Chromosome 22 8 8 10 12

Full length (amino acids) 1,020 916 543 499 470

Splice variant length (amino acids) 924 540 NA NA NA

MW based on DNA sequence (kDa) 112,477.6 ± 7.2 102,470.8 ± 6.6 61,400.8 ± 4.0 55,390 ± 3.6 53,650.3 ± 3.5

MW based on processed DNA sequence (kDa)355–359 105.6 102.5 61.5 55.4 53.7

MW on SDS gel (kDa)a 190–210 150 68 66 57

Chargeb –11 –64 –49 –14 –15

Phosphorylation +++c ++ + + +

O-glycosylation ++ ++ + – –

Genetic risk for ALS, SMA, CMT ALS, PD ALS, CMT PD, LBD ALS

ALS, amyotrophic lateral sclerosis; CMT, Charcot–Marie–Tooth disease; MW, molecular weight; LBD, Lewy body dementia; NA, not applicable; NfH, neurofilament heavy chain; NfL, 
neurofilament light chain; NfM, neurofilament medium chain; PD, Parkinson disease; SDS, sodium dodecyl-sulfate; SMA, spinal muscular atrophy. aDiffers from calculated weights owing to 
post-translational modifications. bCalculated from amino acid sequence. cNfH is the most extensively phosphorylated protein of the human body.
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with classical enzyme-linked immunosorbent assay (ELISA). Simoa tech-
nology is based on a digital ELISA, in which single nanobeads carrying 
immunocomplexes are counted as positive or negative based on second-
ary antibody recognition, which is then used to calculate the concentra-
tion of the analyte64. Combining this technology with NfL antibodies 
that were originally validated in CSF detection kits (UmanDiagnostics)65 
enabled the detection of minute quantities of NfL5,66. The same antibod-
ies have subsequently been used in a microfluidic NfL assay (on an ELLA 
platform), which achieved similar performance as Simoa67. A third assay, 
known as Meso Scale Discovery, is similar to ELISA but relies on a more 
sensitive electrochemiluminescence technique for analyte detection61. 
Despite their sensitivity, these three technologies are designated for 
‘research use only’ — multiple challenges hinder their translation into 
clinically approved diagnostic tests (Box 1).

Despite the challenges involved, growing interest in NfL quanti-
fication and the potential value of this biomarker in clinical practice 
has led to ongoing development of quantification methods that can 
be used for in vitro diagnostics. These methods are based on fully 
automated platforms68 that are compatible with random-access work-
flows in clinical chemistry laboratories19. These assays typically enable 
measurement of NfL in both CSF and plasma or serum. In 2022, details 
of an immunoprecipitation mass spectrometry-based assay for meas-
urement of NfL in CSF were published, showing a strong correlation 
between measurements made with this assay and those made with 
the most widely used ELISA for NfL in CSF50. This assay is now being 
considered as a possible reference method for NfL quantification19.

Confounding factors
Normal ageing involves physiological phenomena that lead to neuro-
axonal degeneration and release of neurofilament proteins into CSF 

and blood69. No convincing evidence suggests that these processes and 
the resulting neurofilament protein levels differ between the sexes16,70. 
In addition, comorbidities can affect the release and turnover of neuro-
filaments, and the prevalence of such comorbidities is highest among 
people in the upper age strata; therefore, these effects are superim-
posed on age-related changes in neurofilaments71. This combination 
means that defining normal reference values in these age groups is a 
major challenge. This problem is especially relevant to blood concen-
trations of neurofilaments, and major efforts have been made in the 
past 5–10 years to define relevant confounders.

The normal upper reference values for CSF concentrations of NfL 
increase more than twofold between the ages of 20 and 50 years and 
double again by age 70 years72,73. These increases are likely to reflect 
a faster rate of neuro-axonal degeneration — a notion supported by 
correlations between neurofilament levels and the rate of hippocam-
pal atrophy in cognitively healthy older people without pathological 
increases in Alzheimer disease biomarkers74 — but could also reflect 
changes in CSF fluid dynamics75. In the blood, concentrations of NfL 
increase by 2.2% per year between the ages of 18 and 70 years in healthy 
control individuals76. An international normative reference database 
for serum NfL concentrations in individuals with no evidence of CNS 
disease that is based on Z-score (percentile) transformed values 
adjusted for age and BMI has now been created — a major milestone 
towards clinical implementation of NfL as a biomarker16 although the 
existing database is assay specific. In this database, blood concentra-
tions of NfL increase exponentially with age until ~50 years of age, after 
which the rate of increase becomes even steeper.

Besides age, BMI is an important confounder for blood levels of 
NfL; lower levels are associated with a higher BMI owing to the larger 
volume of blood in which NfL is diluted77. Both age and BMI have been 

CSF

Axonal injury

Blood Analytical targeta b

Fig. 1 | Neurofilament release after axonal damage and detection of cleavage 
products in the blood. a, When an axon is damaged (left), cytoskeletal proteins, 
including neurofilament proteins (blue), are released into the extracellular 
space and, subsequently, into the cerebrospinal fluid (CSF) and, at lower 
concentrations, into the blood. Degradation of neurofilament proteins 

produces cleavage products (red, blue) and can unmask epitopes17 that are 
normally hidden in neurofilament proteins released by intact neurons during 
physiological metabolism. b, Highly sensitive immunoassays can reliably detect 
blood levels of certain neurofilament light chain fragments via these epitopes 
(red). Adapted from ref. 1, Springer Nature Limited.
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included in the derivation of normative values16, enabling BMI to be 
accounted for in clinical application. However, some laboratories use 
reference values that are adjusted for age but not BMI16,78 on the basis 
that the effect of age on blood levels of NfL is considerably stronger 
than that of BMI.

Another confounder of blood NfL concentration is renal insuf-
ficiency owing to reduced clearance of NfL from the blood14,16,79,80 and, 
possibly, protein metabolism81, although evidence for the latter is 
limited. Indeed, estimated glomerular filtration rate is negatively 
correlated with NfL concentrations in the blood when the rate is  
<60 ml/min/1.73 m2, which is associated with a considerable increase 
in serum NfL levels16. In practice, therefore, this association is mainly 
relevant for those with certain renal diseases82.

Other comorbidities that have been associated with increased 
blood levels of NfL include diabetes mellitus and cardiovascular con-
ditions such as atrial fibrillation, heart failure and peripheral artery 
disease81,83,84. The effects of lifestyle factors on NfL levels are largely 
unexplored, although alcohol abuse has been associated with increased 
blood levels of NfL in a small study85. In mountain climbers, serum NfL 
levels increased after ascent to 4,559 m independently of the occur-
rence of acute mountain sickness86, although another study showed 
no significant changes in NfL levels in normobaric hypoxia87. Intense 
bouts of aerobic exercise do not seem to affect CSF levels of NfL in the 
short term88 but observations of blood NfL levels have differed between 
studies; lower levels and unchanged levels have been reported in asso-
ciation with aerobic exercise89,90. The influence of race and ethnicity 
on NfL levels has not been studied in adequately large healthy control 
populations.

Statistical analysis and reference values
Statistical analysis of NfL levels presents several challenges. NfL con-
centrations are continuous measures but their distribution is generally 
right-skewed and heavy-tailed (Fig. 2a). For this reason, NfL measures 
are often analysed after log transformation78,91,92 to meet the assumption 
of a normal distribution of the residuals required in regression models, 
with median values or geometric means as summary statistics92,93.

In our 2018 Review, we stated that “the main factors limiting the 
application of neurofilament measurements to disease monitoring 
individuals are the lack of normal values of neurofilament across all 
age groups […] and the need for thorough multi-centre analytical assay 
validation to achieve standardized and reliable measurements across 
different sites”1. Since then, considerable efforts have been made to 
standardize assessment of neurofilament proteins to create reference 
values and enable their use at the individual level15,16,78,94,95.

As discussed above, NfL levels in the blood strongly increase with 
age and moderately decrease with higher BMI16,71,77. Consequently, NfL 
levels need to be interpreted in a physiological context; by contrast, 
most standard laboratory parameters are reported in relation to age-
independent upper limits of normal. Adjustment for these confound-
ing factors is an option at the group level (although complicated by 
non-linearity16), but alternative approaches are needed for application 
to individuals.

One possible approach is to define normal values in different age 
bins78, but the costs are a loss of biological information dependent on 
the width of these bins (because the upper limit of normal is identi-
cal for individuals at the extremes of each bin) and potential loss of 
precision, depending on the number of samples per bin. These costs, 
which are particularly problematic when sample sizes are small, can 
be minimized by modelling associations across the entire age range. 

For example, reference curves can be generated that are analogous to 
child growth curves96.

The association of NfL levels with age and BMI in individuals aged 
>20 years has been modelled based on a large, multinational dataset of 
control individuals in Europe and the USA using a generalized additive 
model for location, scale and shape16. Modelling of the skewed distri-
bution of the data enabled precise estimation of Z-scores (which are 
interchangeable with percentiles; Fig. 2b). These NfL Z-scores express 
how strongly (in terms of the number of standard deviations) a given 
NfL measurement deviates from NfL values in control individuals 
adjusted for age and BMI. Hence, one value represents whether and 
to what extent NfL is pathologically increased. Z-scores are, by defini-
tion, normally distributed across age groups, which is advantageous 
for modelling. Following the modelling in people aged >20 years, 
international initiatives have broadened the range to include children, 
adolescents and young adults aged 0–20 years97 (Fig. 3). The distribu-
tion of NfL levels in healthy children revealed an age-dependency that 
is distinct from that in adults, thereby highlighting the limitations of 
solely relying on statistical age adjustments. Furthermore, the use 
of the Z-score provided greater statistical power when distinguishing 
between healthy groups and groups with disease (Fig. 3).

An unmet need and potential threat in the development of valid 
and easy-to-use reference values for application at the individual level 
is inter-centre variability in NfL measures obtained with the same assay. 
In a round-robin study across 17 laboratories in Europe and the USA, 

Box 1

From the laboratory to 
the clinic
Laboratory-developed tests can have important roles in health care, 
enabling the use of analytically and clinically validated biomarkers 
for clinical diagnostics. However, obtaining regulatory approval for an 
in vitro diagnostic method is a challenge for kit suppliers. Regulatory 
and quality requirements are strict, including demonstration of 
the control of reagent production and quality by the company; 
full analytical qualification of the test, including its performance 
(for example, its limit of detection, limit of quantification and 
linearity) and robustness; studies of interference by the presence of 
substances in the specimen; demonstration of the ability to supply 
batches that give comparable values over time; and clinical validation 
that the test provides the answer to a defined medical need6.

For suppliers, these stages of production and analytical and 
clinical validation are expensive and are the legal responsibility of 
companies. The situation is further complicated by the requirement 
to use equipment for analysis that is itself certified for in vitro 
diagnostic use, has a low cost, and meets the ergonomic and user 
requirements of routine laboratories; functionality requirements 
include the ability to connect to IT systems, management of 
patient identities (a barcode reader), adaptation to clinical primary 
sample tubes and a random-access sample passage system. 
Consequently, only a small number of companies are developing 
in vitro diagnostic solutions and these are subject to intense global 
competition.
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coefficients of variation for nine serum samples ranged from 6.9% to 
11.8% between laboratories98. However, larger variation is seen in inter-
assay precision between centres and in clinical practice when compared 
with controlled experiments65,98, necessitating rigorous procedures to 
develop robust in vitro diagnostic methods.

Summary and remaining challenges
Considerable methodological efforts have been made in the past 
5–10 years to make NfL values applicable in clinical practice. Online 
tools are now available to assess whether an NfL measurement falls 
within the normal range accounting for age and BMI16,97. However, 
work remains to be done before broad clinical application is possible. 
For example, NfL measurement results would ideally be equivalent 
regardless of which analytical assay or platform is used, and efforts to 
produce certified reference material to calibrate assays and harmonize 
values across platforms are in progress19. Current age-dependent and 
BMI-dependent NfL reference ranges will need to be transformed to 
adjust for newly developed assays that produce different absolute 
NfL values.

Finally, data are accumulating from routine NfL assessments in 
real-life situations and are being used in pragmatic trials to exam-
ine how implementation of NfL as a biomarker in clinical practice 
affects the course of the disease99. In the next few years, these studies 
will provide us with insights into the practical utility of NfL in clinical 
settings.

Neurofilaments in neurological disease
Neurofilaments have been investigated as biomarkers in a wide range 
of neurological diseases. Below, we summarize developments in 
each disease with a focus on progress towards clinical application of 
neurofilament measurements in each context.

Neuroinflammatory disorders
Multiple sclerosis, neuromyelitis optica spectrum disorder (NMOSD) 
and myelin oligodendrocyte glycoprotein antibody-associated disease 
(MOGAD) are chronic diseases of the CNS that involve focal inflamma-
tion and brain-diffuse neurodegeneration and share typical clinical 
features such as relapses and focal white matter lesions. NMOSD and 

MOGAD have only recently been recognized as distinct nosological 
entities from multiple sclerosis following the discovery of pathogenic 
autoantibodies that target astrocytes in NMOSD and oligodendrocytes 
in MOGAD. Though these three diseases have different pathogenetic 
mechanisms and long-term clinical courses and require different ther-
apies, an increase in levels of neurofilament proteins during acute 
disease states is a common denominator.

Multiple sclerosis. NfL was first described as a CSF-based biomarker in 
multiple sclerosis in 1998 (ref. 100). NfL levels were increased in people 
with multiple sclerosis101, were highest immediately after an attack, 
took >200 days to return to average levels within the multiple sclerosis 
cohort100 and correlated with the degree of clinical disability100. In the 
25 years since, these findings have been confirmed and extended into 
different stages and states of multiple sclerosis1. Most recently, the 
development of high-sensitivity assays to quantify NfL in the blood 
has enabled longitudinal measurement to assess treatment responses.

Measurement of NfL levels in the 6 months after initiation of ther-
apy has shown that the higher therapeutic efficacy of monoclonal 
antibodies (CD20, CD52 and α4β1-integrin antibodies) than those of 
oral therapies (S1P receptor inhibitors, dimethyl fumarate and terif-
lunomide) and platform therapies (glatiramer acetate and IFNβ)16,102 
is reflected in a more pronounced decrease in NfL levels16,103,104. 
Furthermore, given that serum and plasma levels of NfL are associ-
ated with acute clinical features (relapse rate) and MRI features (lesion 
development and load) of disease4,105, they have been used as an efficacy 
end point in some of the most recent trials of therapies for relapsing–
remitting multiple sclerosis and secondary progressive multiple 
sclerosis7,103,106–108. The specificity of NfL as a drug response marker is 
further emphasized by the observation that treatment with drugs that 
have little or no clinical efficacy (for example, riluzol109, acyclovir100, 
vitamin D110,111, IFNβ and glatiramer acetate104 in relapsing–remitting 
multiple sclerosis and fingolimod in primary progressive multiple 
sclerosis93) is associated with minimal or no change in NfL levels.

With the introduction of high-efficacy multiple sclerosis thera-
pies (natalizumab, ocrelizumab, ofatumumab, alemtuzumab and 
haematopoietic stem cell transplantation) that almost completely sup-
press acute inflammatory activity but have less impact on progression, 
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Fig. 2 | Physiological levels of NfL in different age 
groups. a, Distribution of raw serum concentrations 
of neurofilament light chain (NfL) by age group. 
As often observed for fluid biomarkers, the 
distribution of the concentrations is right-skewed 
with outliers. The effects of BMI are not included in 
these data. b, NfL Z-scores by age group. Z-scores 
provide a single measure of deviation from normal 
that accounts for age (and BMI). Z-score is the 
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reference population. Plots generated based on data 
from ref. 16.
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interest increased in whether NfL can predict the course of multiple 
sclerosis progression. Evidence is now accumulating that NfL levels 
are not reduced to normal values by these high-efficacy therapies, and 
the remaining elevation could reflect subclinical disease activity that 
leads to continuous neuronal damage and eventually disease progres-
sion112. In fact, studies have shown that NfL levels are quantitatively 
associated with the future risk of worsening disability and with MRI 
features of neurodegeneration such as optic nerve, brain, and spinal 
cord atrophy4,16,109,113–119 and chronic white matter inflammation120. 
NfL Z-scores are elevated 1–2 years before but not concurrently with 
disability worsening independent of relapse activity, underlining the 
potential for NfL levels to predict the disease course more effectively 
than standard clinical and MRI assessments121. This association between 
elevation of NfL levels and an increased risk of disability worsening 
could form the basis of a new treatment goal; that is, achieving physi-
ological NfL levels, reflecting optimal suppression of subclinical disease 
activity to minimize future disability.

Given that NfL levels specifically reflect neuronal damage, combin-
ing this measure with biomarkers that indicate other pathophysiologi-
cal features of progression could provide additional diagnostic power. 
Indeed, a head-to-head comparison of NfL and GFAP (the intermediate 
filament equivalent of NfL in astrocytes) has demonstrated that the 
combination of these two biomarkers outperforms the ability of NfL 
alone to predict long-term disability122. In clinical practice, the primary 
uses of NfL in multiple sclerosis are likely to be quantification of clinical 
and subclinical disease activity and the monitoring of drug response123. 
For the prediction of long-term outcomes, the combination of NfL and 
GFAP might have higher predictive power to anticipate progression122.

NMOSD and MOGAD. Elevated CSF levels of NfH in NMOSD were 
first reported in Japanese people with the disease in 2007 (ref. 124). 
Subsequently, increased serum levels of NfL have been described in 
NMOSD and MOGAD125,126, and multiple studies support the clinical 
use of NfL in multiple sclerosis, NMOSD and MOGAD (Supplemen-
tary Table 1). As in multiple sclerosis, CSF and serum levels of NfL are 
highly correlated127, are higher during clinical exacerbation than during 
remission125,127–129, and correlate with clinical disease severity125,127,130. 
Comparison of neurofilament levels between the two diseases has 
shown significant differences at the group level but also strong 
overlap124,129,130, such that these differences are not meaningful for 
differential diagnosis at the individual level. The same is true for the dif-
ference in levels between NMOSD and multiple sclerosis127. In essence, 
therefore, NfL and NfH are not diagnostic of NMOSD or MOGAD but 
are markers of disease activity and disease progression. In contrast to 
multiple sclerosis, little is known about whether NfL is a prognostic 
marker in NMOSD and MOGAD. The current evidence points towards 
GFAP being a more appropriate biomarker than NfL for longitudinal 
monitoring of NMOSD128.

Neurodegenerative dementias
Evidence from many studies supports clinical use of neurofilaments in 
various neurodegenerative dementias, including Alzheimer disease, 
Parkinson disease dementia, dementia with Lewy bodies and fron-
totemporal dementia (FTD; Supplementary Table 2). We discuss the 
clinical utility for each of these conditions below.

Alzheimer disease. At the group level, people with Alzheimer disease 
can be differentiated from healthy control individuals based on NfL 
levels in CSF73,131 and blood132,133 with fair accuracy (area under the curve 

(AUC) ~0.7). However, NfL levels seem to be independent of cerebral 
amyloidosis but associated with neurodegeneration, especially of 
white matter axons134–137. The almost ubiquitous increase of NfL in 
neurodegenerative diseases73,138 limits its ability to differentiate Alzhei-
mer disease from other causes of dementia. Nevertheless, measures of 
NfL are relevant in specific clinical contexts. For example, NfL levels can 
differentiate primary progressive aphasia associated with Alzheimer 
disease from that associated with semantic variant FTD, which is asso-
ciated with higher NfL levels139. Very high levels of NfL in Creutzfeldt–
Jakob disease (CJD) also make it possible to differentiate this disease 
from Alzheimer disease140 and rapidly progressive Alzheimer disease141.

In autosomal dominant Alzheimer disease, changes in blood levels 
of NfL seem to precede the first clinical manifestations by more than 
a decade and also predict clinical progression within the Alzheimer 
disease continuum142–144. Therefore, NfL can be used to predict and fol-
low the evolution of Alzheimer disease in people with a genetic risk for 
this disease such as people with Down syndrome145 or with autosomal 
dominant inherited Alzheimer disease142.

Parkinson disease dementia and dementia with Lewy bodies. 
Progression of Parkinson disease is often associated with cognitive 
decline and, in late stages, dementia146. However, during the initial 
stages of Parkinson disease, NfL levels are similar to those in healthy 
control individuals138. Consequently, CSF and blood levels of NfL have 
no early diagnostic value in Parkinson disease but could inform predic-
tion of progression to dementia146,147 and help to differentiate classi-
cal Parkinson disease from atypical parkinsonian disorders such as 
progressive supranuclear palsy (PSP), corticobasal degeneration and 
multiple system atrophy (MSA)148. This differential diagnosis is impor-
tant because these pathologies differ greatly in their management, 
treatment and prognosis149.

Blood NfL levels are also increased in dementia with Lewy bod-
ies. NfL levels are similar to those in Alzheimer disease and lower than 
those in FTD, limiting their use for differential diagnosis but offering 
opportunities for the measurement of treatment responses150,151.
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Frontotemporal dementia. FTD — the third most common cause of 
neurocognitive impairment after Alzheimer disease and dementia 
with Lewy bodies — encompasses a heterogeneous group of neuro-
degenerative diseases characterized by behavioural, executive, and 
language deficits and caused by various underlying proteinopathies 
— aggregates of tau (~47.5%), inclusions of TAR DNA-binding protein 43 
(TDP43; ~47.5%) or inclusions of the nuclear DNA/RNA-binding protein 
FUS (<5%)152. Approximately 30% of cases are familial, caused by muta-
tions in MAPT (tau pathology), C9Orf72 (TDP43 pathology) or GRN 
(TDP43 pathology)153. The most common form of FTD is behavioural 
variant FTD (bvFTD), which primarily affects personality, social behav-
iour and executive function. Semantic variant FTD affects language, 
corresponding to primary progressive aphasia.

Many studies have investigated the diagnostic performance of 
NfL in FTD154. In clinical practice, differential diagnosis of FTD and pri-
mary psychiatric disorders (PPD) is challenging owing to the overlap 
of some behavioural symptoms with bvFTD. In this context, several 
studies have demonstrated that NfL concentrations in CSF and blood 
are higher among people with FTD than among people with PPD155,156, 
with sensitivity and specificity values above 80%. Thus, as specified 
in current international recommendations157, measurement of NfL in 
CSF or blood could be used in practice for the differential diagnosis of 
bvFTD and PPD158, provided that validated thresholds could be defined. 
Making this differential diagnosis is key for patient management, which 
differs greatly between bvFTD and PPD.

In the context of FTD, blood levels of NfL differ according to the 
underlying mutation — they are highest in people with GRN mutations 
and lowest in people with MAPT mutations159. These levels rise in the 
presymptomatic stages of FTD, and the timing of preclinical increases 
differs with the underlying mutation. For example, increases begin 
~30 years before symptom onset with C9orf72 mutations, ~15 years with 
GRN mutations and at around the time of symptom onset with MAPT 
mutations160. The extent of increases in NfL in the presymptomatic 
stage has significant prognostic value with respect to conversion to 
clinical symptomatic disease (HR 6.7 for cross-sectional increases 
(baseline NfL Z-score ≥0.7); HR 13 for longitudinal NfL changes (annual-
ized change ≥1.4)) in people with mutations161. Based on this evidence, 
increases in blood levels of NfL have been proposed as an inclusion 
criterion in trials that involve people with FTD who are at high risk of 
decline and as an additional biological outcome measure160.

Amyotrophic lateral sclerosis
Upper motor neurons and lower motor neurons contain substantial 
amounts of neurofilament in their long and large myelinated axons, 
respectively. Consequently, levels of NfL and NfH in CSF and blood 
increase greatly in people with ALS compared with healthy control indi-
viduals73,101,162–173. Only CJD and HIV-associated neurocognitive disorder 
are associated with such high levels of neurofilaments73,140,166,172,174,175. 
Nevertheless, whether the degree of neurofilament elevation in ALS 
mostly reflects the extent of upper motor neuron loss and/or lower 
motor neuron loss is still a matter of debate169,170,172,176,177. Indeed, a cor-
relation observed between NfL levels in CSF or blood and degeneration 
of the corticospinal tract (that is, upper motor neurons) assessed by 
diffusion tensor imaging165,169 has not been replicated in large cohorts of 
people with ALS166,172. Reduced levels of neurofilament proteins in spinal 
cord tissue and increased concentrations in the CSF of people with ALS 
could reflect neurofilament protein loss from degenerating neurons178. 
However, on the other hand, a massive elevation in neurofilament levels 
in CSF and blood in the early symptomatic phase of ALS is followed by 

relatively stable protein levels later in the disease course164,167,172,176,179–181 
despite relatively low levels of other axonal and neuronal biomarkers, 
such as tau or β-synuclein163,175, suggesting that the increase in neuro-
filament levels is not due to a simple loss of neurofilament proteins 
from neurons.

Despite the uncertainty over the source of neurofilaments in ALS, 
CSF and blood levels of neurofilaments can distinguish ALS from its 
mimics with a sensitivity and specificity of up to 80%, and this distinc-
tion is likely to be one of the most important clinical applications of 
neurofilament measures164,166,168,170–172,176,177,182. In this comparison, CSF 
levels of NfL and NfH and serum levels of NfL had high diagnostic accu-
racy and slightly outperformed serum NfH171. Furthermore, levels of NfL 
in CSF and serum maintained high diagnostic accuracy independent of 
whether the time from symptom onset to diagnosis was more or less 
than 6 months, a finding that is clinically relevant given that diagnosis 
of ALS is commonly delayed182.

Given this diagnostic accuracy, use of these biomarkers could 
identify the first signs of neurodegeneration, enabling early initiation 
of a therapeutic intervention. In this context, several cross-sectional 
and longitudinal studies have been conducted to explore the role 
of CSF and blood neurofilament levels as candidate biomarkers of 
proximity to symptom onset. However, findings have been mixed; 
some studies have demonstrated a significant increase in blood 
levels of NfH and NfL 1–3.5 years before symptom onset or diagnosis 
in sporadic and genetic ALS179,183–185 whereas others have not identi-
fied any difference in biomarker levels between presymptomatic and 
symptomatic phases177,178,186. These discordant results might reflect 
the interindividual and genetic heterogeneity of ALS or the different 
study designs187.

With respect to prognosis in ALS, CSF and blood levels of NfL 
and NfH have been strongly associated with survival and disease 
progression rate164–170,172,176,181,188–190, and this association has been con-
firmed on multiple analytical platforms67. Even if the ALS Functional 
Rating Scale–Revised remains the most widely used primary outcome 
measure in ongoing clinical trials, blood levels of NfL could provide a 
sensitive pharmacodynamic outcome measure with the potential to 
improve patient stratification and trial power, thereby reducing the 
required sample size, trial duration and individual burden for parti-
cipants180,181,191–193. Indeed, neurofilament levels have been included 
as exploratory outcomes or secondary end points in ongoing trials; 
most notably, a longitudinal decline in neurofilament levels was seen 
during antisense oligonucleotide therapy for ALS associated with 
SOD1 mutations9,194,195. Based on these findings, the FDA has granted 
accelerated approval of tofersen11. In another antisense oligonucleotide 
trial, an increase in blood levels of NfL, even in the absence of clinical 
symptoms, has been used as an inclusion criterion196. Nevertheless, evi-
dence suggests that NfL concentrations are not useful for monitoring 
the therapeutic effect of the classic therapeutic agent riluzole172,197.

Even though neurofilament levels are not included in the current 
diagnostic criteria for ALS198, several centres are adopting use of the 
marker to improve clinical diagnosis, especially in the most complex 
cases199. The evidence collected to date reveals prognostic, monitoring 
and possible pharmacodynamic roles of the marker and supports its 
application as an end point in ongoing clinical trials (Supplementary 
Table 3).

Cerebrovascular disease
Serum, plasma and/or CSF levels of NfL and NfH are elevated in various 
subtypes of stroke2,200–204. Data on haemorrhagic stroke is scarce203, but 
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studies of ischaemic stroke have consistently shown that blood levels 
of NfL are higher in people with ischaemic infarction than in those 
with a transient ischaemic attack205,206. Similarly, younger (median age 
42 years) people (in whom the likelihood of concomitant chronic brain 
changes is low) with cervical artery dissections at the time of presenta-
tion with stroke had significantly higher serum levels of NfL than did 
people with transient ischaemic attack or isolated local symptoms207. 
The high sensitivity of blood NfL levels to acute ischaemic brain tissue 
damage has also been confirmed by studies that have demonstrated 
elevated levels in people with recent, small subcortical infarcts related 
to small vessel disease (SVD)200.

Blood levels of NfL and NfH change over time after stroke  
onset2,200–204,208. In the days after onset, NfL concentrations increase 
continuously, peak after 2–3 weeks and stay elevated for 3–6 months204. 
These dynamics need to be considered when interpreting NfL levels 
observed in different studies as the timing of these ranges from hospital 
admission to >1 year after stroke. The concentration of NfL in the blood 
is also associated with stroke severity as it correlates with clinical scores 
and, to a lesser degree, the extent of tissue damage visible on brain 
imaging (CT and MRI)201–203,205–207,209,210. However, given the temporal 
dynamics of NfL in the acute phase, the association with infarct size is 
dependent on the time point of blood sampling. NfL levels measured 
in the hyperacute phase have limited correlation with infarct size, 
whereas levels at 1 week more robustly reflect brain tissue damage201. 
In intracerebral and subarachnoid haemorrhage, blood levels of NfL 
have been associated with haemorrhage volume203.

Blood levels of NfL correlate with functional neurological 
outcome (modified Rankin scale score) and cognitive status after 
stroke201–203,209,210. Therefore, this marker could serve as a predictor 
of treatment response and functional outcome in people with stroke 
who undergo endovascular therapy for anterior circulation large vessel 
occlusion211. Moreover, accumulating evidence suggests that blood 
levels of NfL are predictive of vascular and all-cause mortality in people 
with cerebrovascular disease203,212.

In cerebral SVD, which is an important cause of ischaemic and 
haemorrhagic stroke and of cognitive dysfunction and dementia, blood 
levels of NfL are related to the burden of disease assessed with brain MRI 
markers such as lacunes, white matter hyperintensities, microbleeds 
and ultrastructural tissue changes on diffusion tensor imaging213–215. 
Such associations have been demonstrated not only in age-related, spo-
radic SVD but also in the hereditary form known as cerebral autosomal 
dominant arteriopathy with subcortical infarcts and leukoencepha-
lopathy213,216,217, indicating that NfL levels truly reflect SVD pathology. 
Further evidence suggests that NfL in the blood is a valuable biomarker 
to monitor the disease as it has been related to the progression of SVD 
lesions, the future occurrence of stroke and new (often clinically silent) 
lesions on follow-up imaging200,213,214,217. Furthermore, blood levels of 
NfL have also been identified as a promising biomarker of covert brain 
infarction in the perioperative and postoperative period in various 
surgical procedures218,219. High levels of NfL in the blood measured at 
1–10 days (median 4 days) after SVD-related stroke symptom onset have 
also been shown to indicate that more destructive lesions will develop 
in the long term (recent small subcortical infarcts that cavitate into 
lacunar infarcts)220 and predicts cognitive decline and dementia during 
long-term follow-up213,214,221. Notably, blood levels of NfL can also predict 
the long-term risk of stroke in people without stroke in population-
based studies222 and in people with diabetes mellitus (significantly 
increasing the power of the Framingham Stroke Risk Score to predict 
incident stroke)223.

In summary, blood levels of NfL are elevated in stroke and SVD, 
reflect disease severity, and could indicate progressive cerebrovascular 
disease. Furthermore, NfL could be a clinically relevant prognostic 
marker of functional neurological disability, incident cerebrovascular 
lesions, cognitive dysfunction and mortality. However, NfL has not yet 
been implemented as a clinical biomarker in people with cerebrovas-
cular disease. Future studies of NfL in the context of cerebrovascular 
disease also need to account for factors that influence NfL levels such 
as age, renal function, presence of atrial fibrillation and BMI14,224, which 
are likely to be particularly relevant and prevalent in this population.

Traumatic brain injury
One of the most important disease mechanisms in TBI is rotational 
injury to the brain tissue225. This injury type often results in axonal 
disruption and release of intra-axonal proteins, such as NfH476–986, 
NfH476–1026 and NfL, into the brain interstitial fluid, CSF and blood46. 
The dynamics of NfL changes after TBI are similar in CSF and serum, 
though the fold change seems to be slightly smaller in the serum than 
in CSF226. In people with acute moderate-to-severe TBI, serum NfL con-
centrations correlate with the ventricular CSF concentration and enable 
people with TBI to be distinguished from healthy people with an AUC of 
0.98–1.0 (ref. 227). Serum levels of NfL measured within 48 h of injury 
have been shown to distinguish people with abnormal head CT findings 
from those with normal head CT findings with high accuracy228–230.

Serum levels of NfL also seem to be altered for long periods after 
TBI. In people with a history of mild, moderate or severe TBI who were 
followed up with serial blood samples from 30 days to 5 years after 
injury, serum NfL levels enabled patients with mild, moderate or severe 
TBI to be distinguished from each other and from individuals without a 
history of TBI231. Similarly, serum NfL concentrations measured as long 
as 1 year after injury correlated with global brain volumes measured 
at the same time point and with diffusion tensor imaging measures of 
white matter integrity231.

Further evidence for the value of neurofilaments in TBI comes 
from studies of sports-related injury. Measurement of NfL levels in pro-
fessional ice hockey players with acute concussion revealed that levels 
in serum were higher among players with a delayed return to play232. 
Furthermore, serum levels of NfL performed better than plasma levels 
of total tau in distinguishing athletes with concussion from those with-
out232. In the context of subacute and chronic repetitive head impacts, 
measurement of NfL concentrations in the blood of boxers 7–10 days 
after a bout showed that levels were increased compared with healthy 
individuals; these levels decreased after 3 months of rest but remained 
higher than in the control group233. Finally, in a study of professional 
athletes with a history of repetitive sports-related concussion who 
underwent lumbar puncture and blood assessment months after their 
most recent concussion, concentrations of NfL in the serum correlated 
with those in the CSF and could distinguish athletes with a history of 
concussion from those without with high accuracy231.

Altogether, the evidence shows that CSF and plasma levels of NfL 
are promising biomarkers to quantify axonal injury in TBI. The conclu-
sion of a systematic review published in 2022 was that, although the 
clinical usefulness of blood NfL for acute diagnosis of mild TBI is uncer-
tain, the biomarker ‘shows promise’ for the prognosis of complications 
of mild TBI, neuroimaging findings and recovery when measured dur-
ing the first days to weeks after injury234. Important to note is that NfL is 
a relatively slow biomarker in mild TBI — the maximum increase occurs 
as late as 2–3 weeks after injury, and the effective half-life of the bio-
marker after reaching its peak value is 2–3 months226,235. One limitation 
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of NfL as a biomarker of TBI is its expression in peripheral nerves2,236 as 
trauma to extracerebral tissue could result in an increase in blood levels 
of NfL if peripheral nerves are injured. Whether this possibility really 
affects the diagnostic performance of NfL is unclear, and more research 
on CNS-specific neurofilament proteins, such as α-internexin, in the 
context of TBI would help to resolve this uncertainty2. Blood levels of 
NfL are currently not used in clinical practice in TBI but the availability 
of standard laboratory instruments will enable rapid and reliable results 
to be obtained facilitating its implementation.

Hypoxic–ischaemic brain injury
The first evidence that levels of NfL and NfH increase after cardiac arrest 
as a correlate of subcortical neuronal injury in hypoxic–ischaemic 
brain injury came from studies of small cohorts237–240 and focused on 
analysis of CSF samples or use of standard ELISA methods to analyse 
blood samples. The introduction of highly sensitive Simoa technologies 
has enabled analysis of the blood compartment, and several studies 
using this approach have demonstrated that NfL levels are strongly 
associated with survival and long-term neurological outcomes after 
cardiac arrest241–250.

In general, blood levels of NfL increase within the first 24 h after 
cardiac arrest and the increased levels persist for days to months, 
although more studies with sampling time points beyond a few weeks 
would be informative251. In single-centre and multi-centre studies, 
adults and children with unfavourable neurological outcomes had 
higher levels of NfL at several time points or a greater change from 
baseline than those with favourable outcomes242–245,247,248,250–257. Indeed, 
meta-analyses indicate that high blood levels of NfL at 48 h after cardiac 
arrest predict poor neurological outcomes with an AUC of 0.92–0.96 
(refs. 255,257,258). Sub-analyses of populations who were treated with 
targeted temperature management and who had an out-of-hospital 
cardiac arrest produced similar results255, though the predictive value 
of the biomarker was lower after intra-hospital cardiac arrest251. Fur-
thermore, the absolute values of NfL and its early kinetics seem to 
accurately differentiate severe hypoxic–ischaemic brain injury from 
other causes of poor outcomes after cardiac arrest252.

Current European and USA guidelines for neurological prognostic 
evaluation after cardiac arrest recommend a multimodal diagnostic 
approach, including head CT, electroencephalography (EEG) and 
measurement of neuron-specific enolase levels in blood259,260. However, 
several studies have shown that the prognostic value of blood NfL in 
this context is higher than that of other blood biomarkers (for example, 
neuron-specific enolase, S100 and tau), clinical tests, neuroimaging 
and neurophysiological investigations242,246–248,255,261,262. Moreover, the 
extent of brain injury as assessed by blood levels of NfL correlated 
with EEG and head CT findings — NfL levels were high in people with 
highly malignant EEG patterns and reduced ratios of grey matter to 
white matter262–264. For the prediction of poor clinical outcomes after 
cardiac arrest, applying a high cut-off for blood levels of NfL results 
in very high specificity and a low percentage of false positives but at 
the cost of lower sensitivity and false negatives242. Inclusion of NfL in 
multivariable models or algorithms that also include clinical scores and 
diagnostic parameters could increase the sensitivity and specificity of 
the models248,250.

NfL in the blood shows promise as a prognostic marker after car-
diac arrest. We suggest that its addition to future guidelines and clinical 
algorithms could widen its application, enabling more accurate and 
homogeneous identification of patients with good and poor outcomes 
after cardiac arrest241.

Parkinson disease
Diagnosis of Parkinson disease remains challenging owing to the large 
clinical overlap with so-called atypical parkinsonian syndromes, such as 
MSA, PSP and corticobasal syndrome265. With respect to diagnostic bio-
markers, seed amplification assays, including the Real-Time Quaking-
Induced Conversion assay, have very high sensitivity and almost 
complete specificity for the diagnosis of Parkinson disease and other 
synucleinopathies in vivo266,267, but measurement of neurofilaments 
in biofluids have provided interesting insights.

Since the late 1990s, cross-sectional and longitudinal studies 
have demonstrated that CSF NfL and NfH levels are higher among 
patients with atypical parkinsonian syndromes than among those with 
Parkinson disease267–272. These findings have been replicated in blood 
samples267,272–274 and validated by comprehensive meta-analyses73,275. 
These analyses indicated that CSF and blood levels of NfL could dis-
tinguish between Parkinson disease and atypical parkinsonian syn-
dromes with an area under the curve of 0.94 and 0.87, respectively275. 
Possible explanations for these findings are that neurodegeneration 
is faster and more extensive in atypical parkinsonian syndromes than 
in Parkinson disease and that subcortical large myelinated axons are 
more prominently involved in atypical parkinsonian syndromes than 
in Parkinson disease272,275.

Combined assessment of CSF or blood NfL with Real-Time Quaking- 
Induced Conversion yielded very-high-accuracy discrimination 
between Parkinson disease and atypical parkinsonian syndromes or 
MSA. For the diagnosis of Parkinson disease, NfL levels needed to be 
lower than a chosen cut-off and α-synuclein seeds needed to be pre-
sent267,276. Moreover, blood and/or CSF levels of NfL correlated with 
disease severity as assessed by motor or cognitive scores267,272,277–285, 
the future rate of neurological and functional progression in Parkinson 
disease274,278,280–282 and atypical parkinsonian syndromes274, striatal 
dopamine transporter uptake in Parkinson disease277,286, and specific 
regional atrophy in MSA and PSP278,280. Of note, NfL levels were associ-
ated with cognitive function in Parkinson disease at follow-up whether 
tested alone or in combination with other biomarkers147,279,281,282,287. 
Furthermore, high NfL levels were associated with shorter survival in 
Parkinson disease, PSP and MSA267,277,280–283. NfL levels were also elevated 
in the blood or CSF of people with prodromal α-synucleinopathies 
(that is, pure autonomic failure and rapid eye movement behavioural 
disorder) to a similar or even higher degree than in people with clinical 
Parkinson disease267,272 and predicted phenoconversion to Parkinson 
disease, MSA or dementia with Lewy bodies288–290.

Though NfL is not yet a routine clinical marker in parkinsonian syn-
dromes, it could be a sensitive initial test for the differential diagnosis of 
these syndromes before more specific tests, such as seed amplification 
assays, are performed. Moreover, NfL can easily be implemented in 
prognostic evaluation, tracking of clinical progression and monitoring 
of therapeutic efficacy in Parkinson disease and atypical parkinsonian 
syndromes (Supplementary Table 4).

Huntington disease
In Huntington disease, highly sensitive assays for NfL in the blood have 
enabled evaluation of NfL as a robust marker of neurodegeneration and 
of the burden of subclinical neurodegeneration in people who are asymp-
tomatic but have CAG repeat expansions that will ultimately lead to the 
formation of mutant Huntingtin protein. In a study of 201 people with 
HTT CAG repeat expansions, plasma levels of NfL were 2.6-fold higher 
in participants with Huntington disease, even in the early premanifest 
phase (predicted onset >10 years away) than in people without mutations 
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in HTT291. Elevated NfL levels were associated with clinical worsening 
assessed with severity scales such as the symbol digit modalities test and 
the Unified Huntington’s Disease Rating Scale291. Moreover, NfL concen-
trations correlated with the extent of localized and global MRI atrophy291. 
As expected, NfL levels increased during follow-up at a faster rate in peo-
ple with HTT mutations than in healthy controls291. A higher number 
of CAG repeats was associated with higher NfL concentrations and a 
faster rate of NfL increase291. Participants with low NfL concentrations 
were more likely to remain at the premanifest stage without noticeable  
abnormalities on the Unified Huntington’s Disease Rating Scale291.

Several other studies have replicated the finding that concen-
trations of NfL are increased in people with HTT mutations in the 
premanifest phase292,293, even in individuals who are >24 years from 
clinical onset294, and have replicated the correlations between NfL 
levels and years to onset295,296, clinical severity297,298, and MRI atrophy297. 
Notably, when compared with CSF levels of NfL and the mutant hun-
tingtin protein, plasma levels of NfL had the strongest association with 
clinical severity and could differentiate between individuals in the 
premanifest phase and those in the manifest phase with an AUC of 0.93 
(ref. 297) and 0.95 (ref. 298), respectively. Similarly, NfL levels had a high 
accuracy for distinguishing between premanifest Huntington disease 
and juvenile-onset Huntington disease and between people with pre-
manifest Huntington disease and healthy individuals (AUC 0.90 and 
0.96, respectively)292. Including NfL in clinical studies as a treatment 
outcome parameter would substantially increase the statistical power 
and reduce the sample sizes needed to a more considerable extent than 
use of mutant huntingtin protein in CSF alone297,298.

Peripheral neuropathies
The first peripheral neuropathy in which CSF and blood levels of 
neurofilaments were successfully quantified was Guillain–Barré 
syndrome (GBS). In GBS, high NfL levels are seen in both CSF and 
serum299–303. High levels are associated with disease severity and axonal 
variants304–306, and have been identified as independent prognosticators 
of poorer outcomes in adults and children301,305,307. Combining measures 
of neurofilaments in CSF and blood could enable conclusions to be drawn 
about whether neurofilaments originate from the CNS or the PNS304.

These observations in GBS are analogous to observations in critical 
illness neuropathy308, giant axonal neuropathy309, chronic inflammatory 
demyelinating polyneuropathy302,310–313, multifocal motor neuropa-
thy314, chemotherapy-induced peripheral neuropathy312,315,316, vasculitic 
neuropathy317, paraproteinaemia-related demyelinating polyneuropa-
thy314, Charcot–Marie–Tooth disease318 and inherited neuropathies319–321. 
Higher blood levels of neurofilaments indicate more severe pathology, 
axonal damage and poorer outcomes in these conditions, and these 
levels are reduced in people who respond to treatment313. People with 
symptomatic hereditary transthyretin amyloidosis have particularly 
high blood levels of NfL321,322. In this disease, blood levels of NfL could 
have a role as a presymptomatic marker in families with disease-causing 
mutations321, as a prognostic marker of clinical outcome321,323 and as a 
marker of response to disease-modifying therapies322,324.

Overall, evidence suggests that neurofilament concentrations 
are elevated and provide prognostic information in most acute and 
chronic neuropathies regardless of cause. Furthermore, from studies 
in a limited set of conditions, neurofilament levels also seem to reflect 
treatment responses and could be used for monitoring during therapy. 
However, the evidence base for qualitative differences in levels and 
temporal dynamics of the various neurofilament isoforms is less robust 
than that in more prevalent CNS conditions such as multiple sclerosis.

Spinal muscular atrophy
Elevated CSF and blood levels of neurofilaments are observed in chil-
dren with SMA325–328. Greater neurofilament levels are associated with 
younger-onset and more severe forms of the disease; the highest levels 
are seen in individuals with two or more copies of SMN2 (refs. 328–330). 
Impressive reductions in both CSF and serum NfL are seen in associa-
tion with approved and emerging gene therapies in different forms of 
SMA327,328,330–332. Though these reductions in NfL are a valuable clinical 
trial end point and future regulatory threshold, the clinical value of 
these treatment-related reductions remains unclear. Pharmacokinetic 
studies from clinical trials of the antisense oligonucleotide therapy 
nusinersen in infantile-onset SMA indicate dose-related reductions in 
NfH levels as well as clinical improvements333. However, in a study of 
people with type 3 or 4 SMA, which have later onset and milder symp-
toms, CSF levels of NfH and NfL were only marginally different between 
those who were treated and those who were not334.

Other neurological diseases
A variety of studies have investigated neurofilament concentrations in 
a range of other neurological diseases or conditions with neurological 
involvement. In rare genetic ataxias335–338, some evidence suggests that 
neurofilament levels could be used as a marker of treatment response339. 
Blood NfL levels are modestly increased after a single self-limited tonic-
clonal seizure340 and can serve as a biomarker of acute neuronal injury 
in status epilepticus341,342. Autoimmune encephalitides are, to varying 
degrees, associated with elevated levels of NfL; levels are higher in 
anti-leucine-rich glioma-inactivated protein 1 (LGI1)-mediated disease 
than in anti-NMDA receptor encephalitis343,344. Though the prognos-
tic value of NfL in anti-NMDA receptor encephalitis is unclear343,345, 
elevated blood levels enabled this condition to be differentiated from 
first-episode psychosis345. Blood NfL concentrations can be used as a 
marker of brain injury in Wilson disease in addition to the clinical and 
neuroimaging disease severity scales346. Prion diseases, such as spo-
radic CJD, are characterized by highly elevated levels of NfL140,174,175, with 
more moderately increased concentrations in more slowly progressing 
forms, for example, fatal familial insomnia174,347.

Infections characterized by neurological involvement are a large 
and heterogeneous group of conditions in which neurofilaments have 
been studied. Among the most studied are HIV-associated neurological 
complications, including dementia, in which neurofilament levels have 
potential as a marker of treatment response5,348. Since 2020, an increas-
ing number of studies have explored the potential of NfL levels in the 
blood as a prognostic marker in COVID-19 (refs. 349–352). Collectively, 
various forms of neurofilaments, particularly NfL, have shown poten-
tial as differential diagnostic, prognostic and/or treatment response 
markers across a spectrum of conditions.

Due to the inherent non-specificity of NfL for a particular dis-
ease aetiology, elevated levels of NfL in an individual can be the result 
of neuro-axonal injury from multiple concurrent clinical and sub-
clinical pathologies. This possibility has potential value in identify-
ing the existence of multiple pathologies that could have otherwise 
been missed but also complicates the interpretation of one-off NfL 
measurements and underscores the need for the clinical context to 
be considered. Integration of neurofilament measures with other 
emerging biomarkers with greater diagnostic specificity (for example, 
isoforms of amyloid-β in the case of Alzheimer pathology)353 could help 
to refine the application of neurofilament as a biomarker, perhaps 
even enabling the relative contributions of concurrent pathologies to  
neuro-axonal injury.

http://www.nature.com/nrneurol


Nature Reviews Neurology | Volume 20 | May 2024 | 269–287 280

Review article

Conclusions and future outlook
Neurofilament proteins, and particularly NfL, have become one of 
the most intensely studied blood-based biomarkers in neurological 
and neuropsychiatric diseases1,10,354. Their capacity to reflect, in real 
time, neuro-axonal injury as the substrate of persistent disability has 
attracted many researchers from basic, translational and clinical sci-
ences to explore the potential of neurofilaments for use in epidemio-
logical studies, in the diagnostic work-up of individuals and as an end 
point in clinical trials. One particular advantage of NfL is that its levels 
in plasma or serum reflect neuronal damage as effectively as its levels 
in CSF, enabling minimally invasive longitudinal monitoring of the 
biomarker and giving it great potential for clinical application.

Use of NfL in clinical practice has become closer to reality owing to 
the establishment of large reference databases for physiological serum 
levels in adults and children, which enable more precise interpretation 
at the individual level rather than just at the group level. Nevertheless, 
differences between serum and plasma preparations preclude the use 
of reference values for both matrices equally. Similarly, the various 
high-sensitivity assay platforms that are expected to be launched for 
clinical use generate different absolute values of NfL, which precludes 
comparison of data generated with different platforms until reference 
‘exchange rates’ are established. Current evidence suggests that serum 
samples are preferable to plasma samples for measurement of NfL in 
large-scale clinical laboratories as they provide the same biological 
information but the production of serum samples is simpler and more 
easily standardized.

Like any biomarker, NfL levels cannot be interpreted outside of 
the clinical context and must be used to address a specific question. 
Furthermore, these levels are specific only for neuronal damage and 
cannot be used to diagnose a nosological disease entity owing to the 
extent to which levels overlap across diseases73. In addition, the inter-
pretation of NfL levels differs according to disease stage or state; for 
example, it can be a diagnostic type biomarker in the preclinical phase 
of neurodegenerative processes whereas, at later stages, it is most use-
ful as a prognostic marker and for monitoring of disease progression 
and treatment response. In this context, the FDA approval of tofersen 
based on longitudinal reductions in blood levels of NfL during therapy 
in SOD1-associated ALS — that is, as a treatment response marker — 
signals a paradigm shift in the value of biomarkers in the regulatory 
approval of investigational new drugs. Many of the diseases discussed 
above are currently without effective therapies but are associated with 
increased levels of NfL, which could be a viable efficacy measure for the 
development of novel therapeutic approaches to all of these diseases. 
Of the neurofilament proteins, NfL holds the most promise for smaller 
and shorter clinical trials as NfL assays enable detection of drug effects 
earlier and with higher sensitivity and accuracy. Given that levels of NfL 
increase years before clinical symptoms in primary neurodegenerative 
diseases, measurement of NfL could provide a window of opportunity 
for early therapeutic intervention when damage to the nervous system 
is limited.

Standardization and cross-comparability of measurements taken 
with current and emerging analytical platforms, which require reli-
able reference ranges, will be key steps in moving towards broader 
clinical use of NfL. Addressing these remaining challenges will position 
neurofilaments, and especially NfL, as an important tool in precision 
and personalized medicine for many neurological diseases over the 
coming years.

Published online: 12 April 2024
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